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Abstract—This contribution focuses on a problem that 

appears when using a relay with non-symmetric output in the 

closed loop. Such a scheme is usually used for process model 

parameters identification, possibly followed by automatic 

controller tuning. Whenever static or dynamic properties of the 

process reveal asymmetry when the sign of the input changes, 

the setpoint (reference) becomes different from the operating 

point value of the process output. As a class of relay-based 

identification methods utilize calculations in the frequency 

domain that are based on integral computation around the 

operating point, the discrepancy between the setpoint and the 

operating point can lead to incorrect results. The aim of the 

paper is mainly to provide the reader with problem formulation 

and step-by-step proposition of how it can be solved. Concise 

numerical examples are also given. The concluding remarks 

suggest possible further ways of research. 

Keywords—asymmetry, identification, relay, iterations, 

optimization. 

I. INTRODUCTION 

Most mathematical models of dynamical systems assume 
that both process static and dynamic properties remain 
independent with respect to the relative change of input 
variable sign (related to the operating point). These systems 
have a favorable property that the operation point remains 
equal to the reference when the feedback loop is closed. 
Hence, no one has to care about a discrepancy between the 
current setpoint value and the “true” process output operating 
point when identification or control. 

However, the situation changes whenever the process 
evinces asymmetric gain or diverse time constants in its 
dynamics, depending on the input. It is worth noting that we 
do not primarily assume process nonlinearity; in this paper, 
the model is considered linear in the vicinity of the operating 
point. Processes with mass and energy transfer are epitomes 
of these asymmetric systems [1]. However, they can also be 
observed in other fields of human activity. For instance, in 
microelectronics [2], quantum physics [3], or economy [4]. 

This paper is focused on the use of the relay (or, generally, 
another simple non-linear element) in the closed loop in order 
to estimate process model parameters [5], [6]. The cornerstone 
of this family of parameter identification methods is to reach 
sustained oscillations around the operating point that are 
further analyzed and processed via several mathematical 

principles. It is apparent from the above-given introduction 
that the asymmetric dynamics requires the development of a 
special framework concept. 

Two research questions arise herein. First, one has to be 
able to assemble two different submodels (more precisely, 
their parameter sets) from the oscillation data. As both relative 
positive and negative inputs and outputs with respect to the 
setpoint and operating point are reached, the data includes 
information about the behavior of both asymmetric 
submodels. Second, if an asymmetric relay is set, a mismatch 
between the reference and operating point appears (as 
indicated above) and requires to estimate the “true” operating 
point value. This value can be intuitively and roughly defined 
as follows. Let for the given process, estimated operating 
point, and obtained sustained oscillations, the computed 
process static gain [6], [7] be equal to the factual static gain. 
Then the operation point, based on which the static gain is 
computed, is the “true” one. It is naturally expected that the 
model parameters representing its dynamics can theoretically 
be found exactly for this point as well. 

The aim of this contribution is, hence, twofold. We attempt 
to provide the reader with an idea of how to guess the intrinsic 
operating point. Simultaneously, based on this information, an 
iterative procedure of two asymmetric submodels estimation 
based on the asymmetric relay-feedback experiment is 
proposed. Two numerical examples are given in the paper to 
elucidate the motivation and ideas for a broader audience and 
maximum clarity. Several propositions and opening ideas of 
how the concept can be improved and what research can be 
done in the future conclude this contribution.  

It is worth noting that preliminary concise and rigorous 
formulations of the presented thoughts together with a rich 
comparative study have recently been submitted to a journal 
[8]. Nevertheless, due to limited space, a detailed motivation 
and a step-by-step train of thought regarding the proposed 
concept have not been made. 

 

 

Fig. 1. A sketch of the basic relay-feedback system for identification. 
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II. RELAY FEEDBACK FOR IDENTIFICATION 

In this section, a framework principle of the model 
parameter identification based on the relay-feedback test is 
introduced. The emphasis is put on the asymmetric relay static 
characteristics. For simplicity, the very basic concept is 
presented avoiding advanced techniques that, e.g., make the 
estimation more accurate, save experimental time, reduce the 
number of feedback tests, etc. Then, a particular frequency-
based method is sketched that is used for further simulation 
experiments in this paper. The reader is referred to literature 
resources and references therein, see, e.g., [5]-[7]. 

If the process can be stabilized by the selected relay, 

periodic courses of ( ) ( ),u t y t (called the sustained 

oscillations) with angular frequency 2 /osc oscTω π= can be 

observed after a while. The advantage is that the signal values 
remain in the vicinity of the operating point, which is desirable 
when industrial applications [5]. 

The sustained oscillations can further be processed and 
evaluated. In principle, three main classes of relay-based 
identification methods exist [6]. Namely, first, the time-
domain curve fitting methods attempt to match the measured 
responses [9]. Second, describing function approaches utilize 
a linearized input-output relay relationship based on the 
Fourier series expansion [5], [10]. Third, the curve fitting is 
made in the frequency domain by matching multiple 
frequency-response points [7], [11], [12]. The last family of 
methods is the most important for the sake of this paper since 
the parameter estimation accuracy of such techniques 
fundamentally depends on the operating point guess. 

A. Selected Method in the Frequency Domain 

Considerthe frequency-based method with exponential 
decaying [13] that is applied hereinafter. The relative values of 

measured signals ( ) ( ),u t y t  are computed first 
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where { }0 0,u y expresses the operating point. Then, 
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for some 0a > , so that absolute values of ( ) ( ),a fin a finu t y t

are sufficiently small for the final measurement time fint . The 

following formula holds from the Fourier transform 
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where ( )G s  expresses the process transfer function and 

( ) ( ),U s Y s  means input and output Laplace images, 

respectively. By matching (3) with the process model transfer 

function ( )mG s , a set of algebraic equations can be obtained 

for particular (selected) angular frequencies 0lω ≥ . Note that 

it is originally suggested to be taken as  
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where fint  is assumed to be an integer multiple of the 

sampling period sT . 

The process static gain K can be estimated either from (3) 
for 0lω = or via  
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which simply means the ratio of shifted input and output 
signal surfaces within the period. A relay with an asymmetric 
static characteristic is used to avoid the cancellation of 
positive and negative areas in (5). Let us consider the on/off 
relay (without hysteresis, for simplicity) governed by the 

characteristics as in Fig. 2 where B B
+ −≠ , 0, 0B B

+ −> < . 

III. MOTIVATION AND MAIN RESULT 

It is evident from (1)-(3) and (5) that the knowledge of the 

“true” operating point { }0 0,u y is crucial for a correct model 

parameters estimation. Let ( )0 0.5u B B
+ −= + be fixed. Then, 

the research question is how to estimate 0y  whenever 0y r≠  

due to relay and process asymmetry, see Fig. 3 [8]. Note that 
the meaning of my will be introduced later. Consider (without 

the loss of generality) that 0r = hereinafter. 

A. Research Question Motivation 

Example 1 demonstrates the invalidity of (5) for different 

settings of ,B B
+ − if equality 0y r= is assumed. 

Example 1. Let the process be governed by ideal transfer 
functions 
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where ( )G s
+  and ( )G s

−  express the dynamics if ( )u t B
+=

and ( )u t B
−= , respectively [8]. 

For 0y r= , values of K computed using (5) are displayed 

in TABLE I. It is obvious from the table that the higher B
+  is, 

the better estimation of ( )0 2G
+ =  is. 



 

Fig. 2. Asymmetric on/off relay (without hysteresis) static characteristics. 

 

Fig. 3. Sustained oscillations with relay and process asymmetry [8]. 

TABLE I.  COMPUTED STATIC GAINS – EXAMPLE 1 

B+ B- K y0 

0.2 -1.8 3.0747 -0.0829 

0.5 -1.5 4.9184 -0.1787 

0.8 -1.2 -9.6217 -0.2440 

1 -1 -0.8521 -0.2289/ -0.2690a 

1.2 -0.8 0.4013 -0.2133 

1.5 -0.5 1.1500 -0.1639 

1.8 -0.2 1.6205 -0.0794 

a. For G+/G-. 

 

Contrariwise, the lower the value of B
+  is selected, the 

closer value of K  to ( )0 2.5G
− = is. However, the 

computational results fail completely if B B
+ −≈ ; i.e., the 

relay is symmetric or almost symmetric. It implies the 

intuitive idea that the setting B B
+ −
≫ can serve for 

parameter identification of submodel ( )mG s
+  while 

B B
+ −
≪  can be used for ( )mG s

− . Nevertheless, one has to 

be careful about the existence of sustained oscillations for a 

high value of B
+ . 

Simultaneously, it is expected that the better estimation 
also means that “true” 0y  is closer to r . The rightmost column 

of TABLE I. hence, provides the reader with values of 0y  for 

which the static gains K equal actual ( )0G
+  or ( )0G

−  

when B B
+ −≥  or B B

+ −≤ , respectively. 

It is expected that the same principle also holds for the 
model parameters determining its dynamics. However, a 
proposition of a reasonable guess of 0y  remains unsolved. 

B. The Iterative Procedure Design 

We start the idea of the operating point computation by 
observing the value of my  (see Fig. 3), which expresses the 

average value of ( )y t amplitudes (or a DC shift of the process 

output). From (5), one can conclude that 
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If 0r y= , the surface INTy  can also be viewed as a 

rectangle of the area equal to the integral in (7) 

 ( ) ( )0 1 2INT m osc my y y T y T T= = + . (8) 

However, whenever 0r y≠ , formula (8) does not hold true 

as the offset my  must be considered relatively to (a nonzero) 

0y . Then, relation (8) changes to 

 ( ) ( ) ( )( )0 0 0 1 2INT m osc my y y y T y y T T= − = − + . (9) 

By combining (7) and (8) (or (9)), two possible estimates 
of my  are obtained 
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Remark 1. The left-hand side of (10) enables calculation 
of K  with less computational effort than via (5) for 
symmetric systems since it does not require the knowledge of 

INTy . 

Hence, the goal is to find 0y for which 1 2
m my y= . 

Assume that K  is known exactly for some current (kth 

iteration) operating point estimation 0
k

y . If it is computed that  

( )1 2

0

k

m my y y< , i.e., 

 ( )1 2

0

k

m m my y y y+ ∆ = , 0my∆ >  (11) 

 at this point, the value of ( )0INTy y   should be less in fact. 

Therefore, a new estimate must satisfy 1
0 0
k k

y y
+ > , i.e., 

 1
0 0 0
k k k

y y y
+ = + ∆ , 0 0k

y∆ > , (12) 

see (9). And vice versa. The simple assumption 0
k

my y∆ = ∆  

yields the eventual iterative formula from (11) and (12) 

  ( )1 2 1

0 0 0

k k k

m my y y y y
+ = + − . (13) 



Now, the following iterative procedure can be assembled: 

Step 1. Perform the relay-feedback experiment with 

B B
+ −>  for ( )mG s

+  and/or B B
+ −<  for ( )mG s

− , and 

save the data. 

Step 2. Set 0 0y r= = and select 0a > . Select the initial 

submodel parameter set (e.g., randomly). 

Step 3. Compute K̂  via (5) to get the current estimate of 
submodel parameters relation for 0ω = . 

Step 4. Calculate (3) for a necessary number of angular 
frequencies 0lω >  (e.g., as in (4)) and solve the obtained set 

of algebraic equations along with the static gain guess from 
Step 3 to get the complete submodel parameter set. 

Step 5. Based on the obtained parameter set, calculate the 

updated submodel static gain K̂ . 

Step 6. Compute (10) and update the estimation of 0ŷ  via 

(13), and go to Step 3. 

Example 2. Assume again the asymmetric process with 
subsystems’ dynamics given by (6). Based on TABLE I. , let 
the setting of the simple asymmetric on/off relay be 

/ 1.8 / 0.2B B+ − = −  and / 0.2 / 1.8B B+ − = −  to identify 

submodels ( )mG s
+  and ( )mG s

− , respectively. Set 0r =  as 

default. Simulated process inputs and outputs that transit to 

sustained oscillations with periods 3.313oscT
+ = s and 

2.514oscT
− =  s are displayed in Fig. 4.  

Consider the submodels of order 4 as well, for simplicity 

 ( ) 0

4 3 2

3 2 1 0

m

b
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s a s a s a s a
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Initial static gain guesses 0K̂ are given in TABLE I. and 

select , 1, 20l lω = , according to (4). Let us denote by 

( )ˆ : j lG aω = + g  frequency point vectors computed via (3) 

and by ( ) ( ): , jm m lG aω = + g p p  those of (14) with 

parameter set [ ]0 3 2 1 0, , , ,b a a a a=p  to be identified. We 

attempt to solve the following optimization problem in each 
iteration step 
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where 0α >  and ( ) ( )( )5

2
log 1 exp ii

p
=

Π = − −p  

represents a penalty function (in which ip  denotes the ith 

entry of p ) meaning the necessary stability condition of the 

model. 

Select the well-established variable-simplex optimization 
algorithm [14] is used to tackle with (15). 

 

 

Fig. 4. Sustained oscillations for / 1.8 / 0.2B B
+ − = − (up) and 

/ 0.2 / 1.8B B
+ − = −  (down) – Example 2. 

Let the initial parameters’ estimation be 
1 0 0ˆ2 , 2,4, 4, 2K =  p  with remaining simplex points 

0 1 0
1, 2, 6i

i iβ −= + =p p e  where ie  is the Euclidean unit 

vector with 1 at the ith position. 

Courses of K̂  and 0ŷ  during iterations for selected 

settings of , ,a α β ,  and for ( )mG s
+ are displayed in Fig. 5. 

Analogously, those results for ( )mG s
−  are provided in Fig. 6.  

Note that data already given in TABLE I. are omitted, and the 
solid lines mean the ideal values in the figures. 

Eventually, the selected final identified model parameter 
values are given in TABLE II.  Fig. 7 displays process and 
model step responses. Besides the optimized model for fixed 
setting 0 0y r= =  is added to the comparison. Analogously, 

Nyquist plots are benchmarked in Fig. 8. 

It is worth noting that the proposed iterative procedure 
provides better time-domain and frequency-domain 
performance measures compared to the assumption that 

0 0y r= =  and also against some other relay-based 

identification techniques (based on the frequency-fitting 
principles and even those using the describing function). The 
reader is referred to [8] for more detail. 

We have found during numerical tests that a better static 
gain estimation does not necessarily coincides with a better 
model dynamics’ parameters identification. In other words, 
the best spectral matching can be found for a different 
operation point estimation than the ideal one (from the static 
gain viewpoint).  



 

 

Fig. 5. Iterated values of K̂  (up) and 0ŷ  (down) for ( )m
G s

+ – Example 2. 

 

 

 

Fig. 6. Iterated values of K̂  (up) and 0ŷ  (down) for ( )m
G s

− – Example 2. 

 

 

TABLE II.  EVENTUAL SUBMODEL PARAMETERS – EXAMPLE 2 

Submodel b0 a3 a2 a1 a0 

( )m
G s

+  31.9219 7.6641 25.9764 41.8680 15.6603 

( )m
G s

−   

[x 104] 
14.7905 0.5750 3.0530 5.7864 6.3409 

 

 

 

Fig. 7. Step responses comparison for ( )m
G s

+ (up) and ( )m
G s

− (down) – 

Example 2. 

IV. DISCUSSION AND FURTHER RESEARCH SUGGESTIONS 

The proposed strategy suffers from many discrepancies 
and requires further improvements, mainly regarding 
numerical issues. A list of some possible enhancements and 
open problems follows. 

A different frequency set from (4) might be considered. 
Although some authors postulate that angular frequencies 
higher than the so-called ultimate one ( oscω≈ ) cannot be 

considered [7], it is not reasonable from the mathematical 
point of view. The only theoretical limitation is half of the 
angular sampling frequency ( 2 / sTπ ). 

Another crucial task is the setting of a  in (3). We have 

observed via numerical tests that the best-optimized results 
(for iterated 0ŷ ) could be obtained for a different value of a  

than the one that gives the best estimation with ideal 0y . In 

[15], the authors recommend to take the setting / 20osca ω= . 

 

 



 

Fig. 8. Nyquist plots comparison for ( )m
G s

+ (up) and ( )m
G s

− (down) – 

Example 2. 

The decaying can also be applied not to the whole time 

interval [0, ]fint t∈ but within the sustained oscillation period 

only. More precisely, it holds for a periodic signal that 
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i.e., formula (4) represents a special case of (16) for 
0a ω= = . It is, moreover, questionable whether a setting

0ω ≠ may give a good result.  

The presented framework idea can also be naturally used 
for other relay-based identification methods (i.e., not only for 
[13]), which suggests attempting to benchmark selected ones. 

We have also observed that some settings of the triplet 
, ,a α β do not yield solution convergence. For these cases, one 

may either find the result with the lowest fitness within the set 
of all iterative steps or reset the estimation of p in each step 

(yet preserve the update of 0ŷ ). 

Many research questions can also be raised regarding the 
definition of the cost function and constraints. A selection of 
suitable optimization techniques goes hand in hand with that. 

Last but not least, it would be challenging to identify 
parameters of models with more complex dynamics (e.g., 
infinite-dimensional ones [16]) and verify the proposed 
procedure via a real-time laboratory experiment. 

V. CONCLUSIONS 

The presented preliminary research has been induced by 
the observation that the use of asymmetric (and even 
symmetric) relay when identifying systems and processes 
with possible asymmetric dynamics yields a mismatch 
between the reference signal and the operating point. The 
crucial step of the proposed iterative procedure (including a 
subproblem optimization) has been to guess the actual 
operating point value. Numerical results have proven the 
reasonability of the proposed strategy. 
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