
Maximizing Efficiency: A Comparative Study of SOMA Variants
and Constraint Handling Methods for Time Delay System

Optimization
Roman Senkerik

Tomas Bata University in Zlin
Zlin, Czech Republic
senkerik@utb.cz

Tomas Kadavy
Tomas Bata University in Zlin

Zlin, Czech Republic
kadavy@utb.cz

Peter Janku
Tomas Bata University in Zlin

Zlin, Czech Republic
janku@utb.cz

Michal Pluhacek
Tomas Bata University in Zlin

Zlin, Czech Republic
pluhacek@utb.cz

Hubert Guzowski
AGH University of Science and

Technology
Krakow, Poland

guzowski@agh.edu.pl

Libor Pekar
Tomas Bata University in Zlin

Zlin, Czech Republic
pekar@utb.cz

Radek Matusu
Tomas Bata University in Zlin

Zlin, Czech Republic
rmatusu@utb.cz

Adam Viktorin
Tomas Bata University in Zlin

Zlin, Czech Republic
aviktorin@utb.cz

Maciej Smołka
AGH University of Science and

Technology
Krakow, Poland

smolka@agh.edu.pl

Aleksander Byrski
AGH University of Science and

Technology
Krakow, Poland
olekb@agh.edu.pl

Zuzana Komínková Oplatková
Tomas Bata University in Zlin

Zlin, Czech Republic
oplatkova@utb.cz

ABSTRACT
This paper presents an experimental study that compares four adap-
tive variants of the self-organizing migrating algorithm (SOMA).
Each variant uses three different constraint handling methods for
the optimization of a time delay system model. The paper em-
phasizes the importance of metaheuristic algorithms in control
engineering for time-delayed systems to develop more effective
and efficient control strategies and precise model identifications.

The study includes a detailed description of the selected variants
of the SOMA and the adaptive mechanisms used. A complex work-
flow of experiments is described, and the results and discussion are
presented. The experimental results highlight the effectiveness of
the SOMA variants with specific constraint handling methods for
time delay system optimization.

Overall, this study contributes to the understanding of the chal-
lenges and advantages of using metaheuristic algorithms in control
engineering for time delay systems. The results provide valuable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0120-7/23/07. . . $15.00
https://doi.org/10.1145/3583133.3596417

insights into the performance of the SOMA variants and can help
guide the selection of appropriate constraint handling methods and
the adaptive mechanisms of metaheuristics.

CCS CONCEPTS
• Mathematics of computing → Evolutionary algorithms.

KEYWORDS
SOMA, swarm algorithms, parametric optimization, time delay
system

ACM Reference Format:
Roman Senkerik, Tomas Kadavy, Peter Janku, Michal Pluhacek, Hubert
Guzowski, Libor Pekar, Radek Matusu, Adam Viktorin, Maciej Smołka,
Aleksander Byrski, and Zuzana Komínková Oplatková. 2023. Maximizing
Efficiency: A Comparative Study of SOMAVariants and Constraint Handling
Methods for Time Delay System Optimization. In Genetic and Evolutionary
Computation Conference Companion (GECCO ’23 Companion), July 15–19,
2023, Lisbon, Portugal. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3583133.3596417

1 INTRODUCTION
Control engineering is a critical field vital in ensuring the efficient
operation of complex systems. However, various observed quanti-
ties in the system and control loop do not act simultaneously. The
latency between some action and its impact can appear [5]. Opti-
mizing either the control or identification of a complex system with

1821

https://orcid.org/0000-0002-5839-4263
https://orcid.org/0000-0002-3341-4336
https://orcid.org/0000-0003-2899-3246
https://orcid.org/0000-0002-3692-2838
https://orcid.org/0000-0002-9678-0384
https://orcid.org/0000-0002-2401-5886
https://orcid.org/0000-0002-5242-7781
https://orcid.org/0000-0003-0861-0340
https://orcid.org/0000-0002-3386-0555
https://orcid.org/0000-0001-6317-7012
https://orcid.org/0000-0001-8050-162X
https://doi.org/10.1145/3583133.3596417
https://doi.org/10.1145/3583133.3596417
https://doi.org/10.1145/3583133.3596417
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3596417&domain=pdf&date_stamp=2023-07-24

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Senkerik, et al.

time delay is challenging due to numerous interdependent vari-
ables and constraints. A time delay in the system response further
complicates the problem since the system is infinite-dimensional
because of an infinite number of its modes[17].

Metaheuristic algorithms [4] have emerged as a promising tool
for optimizing the control of complex systems and identification
of models with time delay due to their ability to handle high-
dimensional optimization problems and their robustness to noise
and uncertainty. In recent years, various metaheuristic algorithms,
such as particle swarm optimization (PSO), artificial bee colony
(ABC), genetic algorithms (GA), differential evolution (DE), and
hybrid versions with other metaheuristic algorithms have been
proposed for optimizing the control of a complex system with time
delay [6, 10, 15]. Using metaheuristic algorithms in control engi-
neering for time-delayed systems offers a promising approach for
developing more effective and efficient control strategies and pre-
cise model identifications. By leveraging the strengths of these
algorithms, researchers and practitioners can develop more robust,
scalable, and effective control systems.

However, in addition to these advantages, several challenges
and disadvantages are associated with using these algorithms in
a specific domain of time delay systems. One of the challenges is
a black-box nature, when metaheuristic algorithms can be chal-
lenging to understand, as they operate as a black box and do not
provide insight into the underlying mechanisms that drive their op-
timization process. This lack of understanding makes it challenging
to develop effective optimization strategies that leverage the full
potential of these algorithms. Other common challenges are scala-
bility, and the need for hyperparameter tuning of a metaheuristic
algorithm, as there may be many parameters that interact with one
another in complex ways.

The paper’s organization is the following: After the brief state-
of-the-art section and research motivation, the solved problem of
optimization of time delay system model identification is presented,
followed by selected variants of a metaheuristic algorithm. These
variants are introduced in detail, including explanations of all adap-
tivemechanisms. Subsequently, a complex workflow of experiments
is described, followed by a summary of the results and discussion.

1.1 Related Works and Motivation
As stated before, there exists a gap in knowledge about the effec-
tiveness of metaheuristic algorithms in optimizing the parameters
of a model with time delay and the impact of different algorithm
parameter settings and proper choice of core/adaptive functionality
on their performance. To gain a better understanding, this research
paper aims to investigate and identify the most effective internal
mechanisms influencing population behavior and reveal possible
weaknesses of these adaptation mechanisms for different settings of
the search space range and methods for dealing with the constraints
defined by the optimization problem itself. This clearly defines the
motivation for research, which is not the extensive benchmarking
study of various metaheuristic algorithms.

We are aware that recent research [2, 18, 24] has highlighted
the need to move beyond creating new algorithms and focus on
understanding the function and taxonomy of existing metaheuristic

algorithms. Therefore, previous research with the same optimiza-
tion problem modified and supplemented the chosen algorithms
with mechanisms supporting exploratory behavior and knowledge
sharing [14, 19]. The results demonstrated these approaches’ ef-
fectiveness compared to classical evolutionary algorithms, such
as genetic algorithms (GAs). Another study [7] then attempted to
identify more closely the problem of choosing the boundaries of
the search space and the fact that some of the search parameters
may lie very close to the lower bound. At the same time, the up-
per bound is essentially unknown due to the black-box nature of
the problem. Another observation was that a specific implementa-
tion of the CMA-ES algorithm [9] (from the jMetalPy framework)
supporting bi-population and restarting [8] could handle the opti-
mization problem better than the classical evolutionary algorithm,
genetic algorithms (GA), and the Nelder-Mead [20] optimization
method, used as a baseline technique. However, the above referred
study focused on the aforementioned fitness landscape issue and
the discrepancy between the seemingly low (suitable) fitness value
and the resulting inferior system identification and stability in the
frequency domain. Thus, it did not focus on benchmarking and
comparing several optimization methods.

All these facts were behind the self-organizing migrating algo-
rithm (SOMA) choice, the experiments’ workflow, and the nature
of the obtained data processing (not benchmarking). The SOMA
has gained renewed interest from the research community due to
its adaptive nature, exploration capabilities, and ability to solve
complex problems. Recently, many powerful modern versions have
been introduced [23]. We have chosen the original version as the
baseline method and three state-of-the-art variants when each of
these variants includes a different adaptive technique focusing on
either population organization, automatic movement control on
the search space, data-driven population analysis (clustering), and
an ensemble method for strategy and hyperparameter selection.

2 TIME-DELAYED SYSTEM
This section describes a model for optimizing the identification of
a time-delayed system. It also discusses the challenges that need to
be dealt with in this area, especially when the objective function
and sampling points or frequency are not properly chosen, and the
findings from a recent study [7] point to the optimization problem
near the search space’s boundaries.

2.1 General Description
The considered time-delay identification problem [21] is defined
by a model transfer function 𝐺𝑚 : C→ C (1),

𝐺𝑚,p (𝑠) =
𝑏0 + 𝑏0,𝜏𝑒−𝜏0𝑠

𝑠3 + 𝑎2𝑠2 + 𝑎1𝑠 + 𝑎0 + 𝑎0,𝜃𝑒−𝜃𝑠
𝑒−𝜏𝑠 . (1)

Parameters of such a model form a 9-dimensional real vector

p =
[
𝑏0, 𝑏0,𝜏 , 𝜏0, 𝜏, 𝑎2, 𝑎1, 𝑎0, 𝑎0,𝜃 , 𝜃

]
. (2)

As usual, we assume that some of the parameters are related due to
the static gain, i.e.

𝑘 =
𝑏0 + 𝑏0,𝜏
𝑎0 + 𝑎0,𝜃

, (3)

where the value of 𝑘 is well known (or estimated). In our case we
used the value 𝑘 = 0.0322.

1822

SOMA Solving Time Delay System Optimization GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

2.2 Constrains
To achieve appropriate properties of solutions (such as stability,
feasibility, and minimum-phase conditions) we use the following
constraints:

𝜏0 > 0, 𝜏 > 0, 𝜃 > 0,
𝑎2 > 0, 𝑎1 > 0, 𝑎0 + 𝑎0,𝜃 > 0,
𝑎2𝑎1 > 𝑎0,

𝑎2𝑎1 > 𝑎0 + 𝑎0,𝜃 ,
𝑎0,𝜃√︁

(𝑎0 − 𝑎2𝜔2)2 + 𝜔2 (𝑎1 − 𝜔2)2
< 1, ∀𝜔 > 0,

|𝑏0 | > |𝑏0,𝜏 |,
𝑎0 ≠ 0, 𝑎0,𝜃 ≠ 0, 𝑏0,𝜏 ≠ 0.

(4)

Our main task is to find such parameter values that

𝐺𝑚,p (j𝜔𝑖) = 𝐴𝑖 + j𝐵𝑖 (5)

for some fitting points 𝜔1, . . . , 𝜔𝑛 and some measured values of
𝐴1, . . . , 𝐴𝑛 and 𝐵1, . . . , 𝐵𝑛 , where j is the imaginary unit (j2 = −1),
see Table 1.

To solve (5) using optimization methods we reformulate it using
the classical least-square approach. It consists in the construction
of a cost (or fitness) function,

C(p) =
𝑛∑︁
𝑖=1

[(
ℜ𝐺𝑚,p (j𝜔𝑖) −𝐴𝑖

)2 +
(
ℑ𝐺𝑚,p (j𝜔𝑖) − 𝐵𝑖

)2] (6)

This waywe obtain the final version of our optimization problem,
which is to find such parameter values p∗ that

C(p∗) = min
p∈D

C(p), (7)

where D is the set of all p ∈ R9 satisfying (3) and (4). The exper-
iments were conducted in R8 since parameter 𝑏0 was calculated
using (3).

2.3 Challenges for Optimization
Solving parametric optimization problems usually brings several
challenges. Solving an inverse problem consists of minimizing a
misfit function on a set of fitting points. However, this set has
to be designated arbitrally. Distribution of frequencies are crucial
for the process stability, However, wrongly selected fitting points
(frequencies) can cause very low sensitivity to the changes in model
parameters and obtained results did not satisfy quality validation.

Another major issue affecting the outcome is the nature of the
delay system itself. If feedback loops inside the process include
delays (i.e., the so-called state or internal delays), the system is
infinite-dimensional because of an infinite number of its modes.
Only a limited set of model parameters determines its properties
driven by an infinite set of model-free response components. For
most time-delay systems, only a subset of the so-called dominant
modes has a decisive impact on system features in the time domain
as well as in the frequency domain [17]. This poses a challenge for
metaheuristics, as there is a need to search amultimodal constrained
space, and moreover, certain search parameters may be very close
to the boundaries of the search space. All this imposes demands on
the configuration of the metaheuristic algorithm.

Table 1: Observation data

i 𝜔𝑖 𝐴𝑖 𝐵𝑖

1 0.0002 0.03238 -0.00284
2 0.0003 0.03213 -0.00424
3 0.0005 0.03137 -0.00694
4 0.0008 0.02962 -0.01063
5 0.001 0.02813 -0.01278
6 0.0012 0.02645 -0.01465
7 0.0015 0.02371 -0.01692
8 0.0018 0.02087 -0.01857
9 0.002 0.01899 -0.01936
10 0.003 0.01063 -0.02054
11 0.005 0.00057 -0.01713
12 0.008 -0.00540 -0.01110
13 0.01 -0.00704 -0.00795
14 0.011 -0.00757 -0.00658
15 0.012 -0.00795 -0.00531
16 0.014 -0.00843 -0.00296
17 0.016 -0.00860 -0.00074
18 0.018 -0.00846 0.00147
19 0.02 -0.00795 0.00377
20 0.025 -0.00346 0.00982

3 METAHEURISTIC ALGORITHMS
The selected variants of the SOMA are described in the following
subsections together with hyperparameter settings describing the
algorithm configurations and the problem instances to be solved.
Why this algorithm was chosen is explained in the "motivation" sec-
tion 1.1. In following pseudocodes, D represents the dimension of
optimized problem, MAXFES is the maximum number of objective
function evaluations (optimization budget), and NP is population
size, and lastly, the FEs parameter represents the number of eval-
uations of the objective function currently spent at the observed
moment during the run of the algorithm.

3.1 Baseline SOMA
SOMA is a population-based metaheuristic algorithm that modifies
traditional crossover and mutation operations to simulate a social
group of individuals. The algorithm follows a simple process in the
basic variant of SOMA, called All-to-One. At the start of each itera-
tion, known as the migration loop, the fittest individual is selected
as the leader. The remaining individuals then move towards the
leader in the search space, taking jumps determined by the step pa-
rameter until they reach the final position given by the pathLength
parameter. Each step is evaluated using the fitness function, and
the best position, including the initial position of the individual, is
selected as the new position of the individual in the next migration
loop. The All-to-One variant of SOMA has been described in a
recent book and survey [1, 23]. The exact position of each step is
calculated according to (8).

𝑥𝑘+1𝑖, 𝑗 = 𝑥𝑘𝑖,𝑗 + (𝑥𝑘𝐿,𝑗 − 𝑥𝑘𝑖,𝑗) · 𝑡 · 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 (8)

1823

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Senkerik, et al.

Where 𝑥𝑘+1
𝑖, 𝑗

is the new position of i-th solution (for iteration
k+1) for dimension j, and 𝑥𝑖, 𝑗 is the current position of the i-th solu-
tion. The 𝑥𝐿,𝑗 represents a position of a leader (the leader selection
depends on the used SOMA strategy). Parameter t represents steps
from i-th solution to the leader. Solution i is migrating, by discrete
steps, and the best-found solution on t-th position is propagated
into a new iteration of the algorithm. The t parameter is generated
in a range starting from 0 to pathLength with step size step.

The 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 represents an important mechanism in SOMA.
It is generated for each new t step. This vector determines which
dimensions will be changed in a particular step t. In other words,
in which dimensions the solution will “head” or "be perturbed"
towards the leader position or not. Since the SOMA was developed
in the context of the control optimization challenge, this vector is
called "perturbation". In contrast to other metaheuristics, its control
must be understood as a certain threshold value not a mutation
probability. The 𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 consists only of values 0 or 1. These
values are generated based on the value of PRT parameter; the
process is detailed in equation (9), where a rand is a pseudo-random
number from a uniform distribution within the range of 0 to 1.

𝑃𝑅𝑇𝑉𝑒𝑐𝑡𝑜𝑟 𝑗 =

{
𝑖 𝑓 𝑟𝑎𝑛𝑑 𝑗 < 𝑃𝑅𝑇, 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 0

𝑗 = 1, .., 𝐷 (9)

In addition to the All-To-One strategy, there are other basic
strategies, namely All-To-Random, and All-To-All.

All-To-Random. This is a strategy that can be considered more
exploratory. This strategy contains a leader individual as in All-To-
One strategy. However, the leader is selected randomly from all
individuals in the population at the beginning of each iteration.

All-To-All. In this modified strategy, the concept of a leader is
absent, and all individuals migrate toward each other in the same
manner as in the All-To-One strategy. Once an individual completes
its migration, it returns to its original position. All individuals’
position updates occur after they have completed their migrations.
Compared to the All-To-One approach, this strategy explores a
larger search space, enabling faster convergence to local or global
optima of the optimized problem.

Algorithm 1 SOMA ATO
1: Set D, NP, and MAXFES
2: Set step, pathLength and PRT
3: while Stopping criterion not met do
4: select the best solution - leader 𝑥𝐿 from population
5: for 𝑖 = 1 to NP do
6: for 𝑡 = 0 to 𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ with 𝑡+ = 𝑠𝑡𝑒𝑝 do
7: generate PRTVectori by eq. (9)
8: migrate 𝑥𝑖 to 𝑥𝐿 by eq. (8)
9: end for
10: save the best 𝑥𝑖 to new population
11: end for
12: record the best solution
13: end while

3.2 ESP SOMA
The ESP SOMA was first presented in 2019 [11] as a response to
the problem of choosing optimal setting of the control parameter
and strategy of the original SOMA. Such a proper choice strongly
influences performance. The performance varies over different op-
timization tasks and could change over different stages of SOMA
execution. Therefore, the adaptation mechanism of control parame-
ters and used strategy for each individual in a population has been
introduced in ESP SOMA. The adaptation modification is inspired
by Ensemble of Mutation and Crossover Strategies and Parameters
in Differential Evolution (EPSDE) [25].

The algorithm’s functionality can be described as follows: each
individual has its PRT value and strategy. In the initialization step,
each particle has randomly obtained a PRT value from a predefined
set and one of the possible strategies: All-To-One, All-To-All, All-
To-Random. The migration step is followed by an adaptation step,
where the PRT and strategies assigned to individuals are adjusted.
If the particular individual did not improve its objective function
value for a threshold number of subsequent iterations, then the
individual is forced to pick a new strategy and PRT value based on
roulette selection.

3.3 SOMA-CLP
SOMA-CLP [13], is the updated version of its predecessor SOMA-CL
[12], which utilizes the idea of data-driven control of two differ-
ent migration strategies. The first strategy All-To-Random serves
mainly as an explorer, which maps the search space. The second
strategy is named All-To-Cluster-Leaders and is used to exploit
promising areas obtained thanks to the clustering technique. SOMA-
CLP uses a linear adaptation of the PRT control parameter (10) to
generate a perturbation vector, promoting the global transition
from the tendency of exploration to exploitation.

𝑃𝑅𝑇 = 0, 08 + 0, 90 · 𝐹𝐸𝑠

𝑀𝑎𝑥𝐹𝐸𝑠
(10)

All-To-Random Migration Strategy and Identification of Cluster
Leaders. A critical component of this strategy involves storing each
evaluated solution in a memory, denoted as M. This memory of all
previously-visited solutions is utilized in the subsequent subsection.
The objective is to select a few promising solutions within this
memory and use them as candidate leaders for the next phase,
which focuses on exploitation. The selection of leaders is carried
out in two stages. In the first stage, a clustering method is used to
group all solutions based on their parameter values (i.e., positions
within the search space) into several clusters. Specifically, the k-
means clustering method [16] is employed. In the second stage,
only the solutions with the best fitness within their respective
clusters are referred to as cluster leaders. These cluster leaders are
sorted based on their fitness function values in ascending order and
subsequently employed in the All-To-Cluster-Leaders strategy.

All-To-Cluster-Leaders Migration Strategy. The leader is selected
for each migrating individual from the cluster leaders using the
Rank Selection technique [26]. This migration strategy has its own
parameters pathLengthL with step size stepL, to support local search
capabilities. After the end of a single iteration of this strategy, the

1824

SOMA Solving Time Delay System Optimization GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Algorithm 2 ESP SOMA
1: Set D, NP, and MAXFES
2: Set gap, step, pathLength, adaptivePRT
3: for 𝑖 = 1 to NP do
4: if adaptivePRT == 0 then
5: PRTi = 0.3
6: else
7: PRTi = random from {0.1, 0.3, 0.5, 0.7, 0.9}
8: end if
9: strategyi = random from {ATO, ATA, ATR}
10: counteri = 0
11: end for
12: while Stopping criterion not met do
13: for 𝑖 = 1 to NP do
14: if strategyi == ATO then
15: xL = best solution x
16: else if strategyi == ATR then
17: xL = random solution x
18: else
19: P = whole population x
20: xL = {P} - xi
21: end if
22: for 𝑡 = 0 to 𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ with 𝑡+ = 𝑠𝑡𝑒𝑝 do
23: generate PRTVectori
24: migrate xi to xL
25: end for
26: save best xi to new population
27: if xi not improved then
28: counteri += 1
29: if counteri > gap then
30: counteri = 0
31: PRTi = roulette PRT
32: strategyi = roulette strategy
33: end if
34: else
35: counteri = 0
36: end if
37: end for
38: record the best solution
39: end while

whole process (algorithm) is again started from strategy All-To-
Random and the memory M is cleared.

3.4 SOMA T3A
The SOMA T3A was introduced in 2019 [3] and was tested in the
CEC 2019 100 digits competition, where it achieved 4th place. This
algorithm features several modifications compared to the original
SOMA design, with a particular emphasis on the population orga-
nization process. This process consists of three repeated activities:
organization, migration, and update.

The organization process involves two primary activities: the
selection of individuals who will migrate (termed migrants) and the
selection of a leader. Initially, m individuals are randomly selected
from the population, and the n best individuals are chosen from

Algorithm 3 SOMA-CLP
1: Set D, NP, NPL, and MAXFES
2: Set step, pathLength
3: Set stepL, pathLengthL
4: while Stopping criterion not met do
5: 𝑴 = Ø
6: update PRT by eq. (10)
7: for 𝑖 = 1 to NP do
8: 𝑥𝐿 = pick random solution 𝒙
9: for 𝑡 = 0 to 𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ with 𝑡+ = 𝑠𝑡𝑒𝑝 do
10: generate 𝑷𝑹𝑻𝑽𝒆𝒄𝒕𝒐𝒓 by eq. (10)
11: migrate 𝑥𝑖 to 𝑥𝐿 by eq. (8)
12: save each evaluated solution into 𝑴
13: end for
14: end for
15: k-means clustering method for solutions stored in 𝑴
16: keep only best-solution from each cluster
17: sort the remaining solutions
18: for 𝑖 = 1 to NP do
19: 𝑥𝐿 = Rank Selection from cluster leaders
20: for 𝑡 = 0 to 𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ𝐿 with 𝑡+ = 𝑠𝑡𝑒𝑝𝐿 do
21: generate 𝑷𝑹𝑻𝑽𝒆𝒄𝒕𝒐𝒓 by eq. (10)
22: migrate 𝑥𝑖 to 𝑥𝐿 by eq. (8)
23: end for
24: end for
25: record the best solution
26: end while

these, where n≤m. These individuals become migrants. For leader
selection, k individuals are randomly selected from the population,
and the best individual from this set becomes the leader. The se-
lected migrants then move towards the chosen leader, except when
the leader is also one of the migrants (in which case, that individual
skips the migration process).

In the migration process, the PRT parameter, to which SOMA
exhibits significant sensitivity in the SOMA [22], has an adaptive
function. The control of this parameter is based on the philosophy of
transitioning from exploration to local search, gradually increasing
from low values to 1, according to the following equation (11):

𝑃𝑅𝑇 = 0, 05 + 0, 90 · 𝐹𝐸𝑠

𝑀𝐴𝑋𝐹𝐸𝑆
(11)

Another change is the gradual reduction of the step size (12), and
the number of jumps is fixed and thus not bound to the pathLength
parameter, as it is in the classic version of SOMA. This means that
each individual moves toward the leader by a certain number of
jumps (hence parameter Njumps). At these stepping points, the
individual is evaluated by a fitness function.

𝑠𝑡𝑒𝑝 = 0, 15 − 0, 08 · 𝐹𝐸𝑠

𝑀𝐴𝑋𝐹𝐸𝑆
(12)

Although this version of the algorithm removed the need to set
the pathLength and step parameters, it added three new parameters
for managing the organization process (m, n, and k).

1825

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Senkerik, et al.

Algorithm 4 SOMA T3A
1: Set D, NP and MAXFES
2: Set m, n, k and Njumps
3: while Stopping criterion not met do
4: update PRT by eq. (11)
5: update step by eq. (12)
6: choose randomly m individuals from population
7: choose the best n Migrants out of m individuals
8: for 𝑖 = 1 to n do
9: choose randomly k individuals from population
10: choose the leader 𝑥𝐿 from k individuals
11: if the 𝑥𝑖 is not the 𝑥𝐿 then
12: for 𝑡 = 1 to Njumps do
13: generate PRTVectori by eq. (9)
14: migrate 𝑥𝑖 to 𝑥𝐿 by eq. (8)
15: checking boundary
16: re-evaluate fitness function
17: updated the better position of the 𝑥𝑖
18: end for
19: end if
20: end for
21: record the best solution
22: end while

Table 2: Parameter search ranges

Name L limit 1 L limit 2,3 H limit 1 H limit 2 H limit 3

𝑏0𝐷 0 0 10 100 500
𝜏0 0 0 100 500 500
𝜏 0 0 250 1000 1000
𝑎2 0 0 1000 2500 2500
𝑎1 0 0 1000 2500 2500
𝑎0 -100 -250 100 250 250
𝑎0𝐷 -100 -250 100 250 250
𝜃 0 0 250 1000 1000

4 EXPERIMENT DESIGN
This research aimed to investigate in detail the behavior of different
adaptive strategies of the chosen algorithm on a black box opti-
mization problem with a specific location of the solution near the
boundaries of the search space. For this reason, the experiment was
divided into three case studies (problem instances) for a total of
three different settings of the search space boundaries. These are
defined in Table 2.

Each problem instance was then solved using 12 configurations
of the SOMA. These 12 configurations contained four different
variants of the SOMA, each for three different constraint handling
methods.

The aim was also to observe how the search capabilities of the
algorithm and the final results would be affected under different
constraints handling methods and under different adaptive strate-
gies of the SOMA. The nature of the optimization problem allows
evaluating the fitness function even in the case of infeasible so-
lutions (as long as they lie within bounds). Therefore, complex

Table 3: Algorithm instances

No. Description

1 SOMA All-To-One Random re-initialization
2 SOMA All-To-One Penalization
3 SOMA All-To-One No constraints
4 SOMA CLP Random re-initialization
5 SOMA CLP Penalization
6 SOMA CLP No constraints
7 SOMA ESP Random re-initialization
8 SOMA ESP Penalization
9 SOMA ESP No constraints
10 SOMA T3A Random re-initialization
11 SOMA T3A Penalization
12 SOMA T3A No constraints

methods to avoid infeasible solutions on an algorithmic level were
not implemented, but a method of random re-initialization, penal-
ization, and finally ignoring constraints was chosen, followed by a
post hoc analysis of the best results from repeated runs.

All experiments with three problem instances and 12 algorithm
configurations (see Table 3) were repeated 30 times with maximum
fitness function evaluations (MAXFES) set to 400 000 and population
size (NP) of 100. The parameter settings (if required) of the SOMA
variants were as follows: PRT = 0.1, pathLength = 3.0, step = 0.11,
Njump = 45, m = 10, n = 5, k = 10, gap = 2, adaptivePRT = True,
𝑝𝑎𝑡ℎ𝐿𝑒𝑛𝑔𝑡ℎ𝐿 = 2, and 𝑠𝑡𝑒𝑝𝐿 = 0.11 These parameters have been
chosen based on the recommendations of the Authors of SOMA
variants, which were used in benchmarking competitions.

5 RESULTS
The results for three problem instances and 12 algorithm configura-
tions are shown and organized in the following way: statistical data
are presented in Tables 4–6, alongsidewith the box-whisker plots de-
picted in Figures 1–3, and convergence plots in Figures 4–6. In these
figures, the line system is as follows: solid line: re-initialization,
dashed line: penalization, dotted line: no-constraints. The feasibility
of solutions for configurations 3, 6, 9, and 12 cannot be ensured.
Thus those results are marked with an asterisk (*). The best feasible
result was achieved for problem instance two and algorithm con-
figuration 10 (SOMA T3A, random re-initialization, highlighted in
bold). The parameter structure of this solution is: {6.56695459e-02,
2.75779657e+01, 1.42609578e+02, 2.43639544e+03, 5.96581118e+02,
1.24201482e+01, -6.54902690e+00, 1.64310256e+02}, confirming the
problem of near bounds optimization problem (dimensions 1 and
4). Discussion about the revealed findings is presented in the next
section.

6 DISCUSSION AND CONSLUSION
Building on the foundation established by previous studies [7, 14,
19], this research aims to enhance our understanding of metaheuris-
tic algorithms in control engineering and shed light on their po-
tential for optimizing the parameters of time delay system models.
Rather than focusing on benchmarking various SOMA variants,
the primary objective of this study was to conduct a comparative

1826

SOMA Solving Time Delay System Optimization GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Table 4: Results for problem instance 1 (bounds limits 1)

Conf. min max mean std.dev.

1 2.7751E-07 3.0534E-07 2.8440E-07 4.6720E-09
2 2.8065E-07 3.9946E-07 2.9599E-07 2.8050E-08
3* 2.7858E-07 5.4496E-05 2.0901E-06 9.8980E-06
4 2.7853E-07 6.4660E-05 2.4662E-05 3.0923E-05
5 2.7886E-07 6.4583E-05 1.7038E-05 2.8270E-05
6* 2.7983E-07 6.4660E-05 2.3247E-05 2.9926E-05
7 3.2117E-07 7.5444E-06 1.7705E-06 1.6090E-06
8 4.4355E-07 1.2137E-05 3.9110E-06 3.3825E-06
9* 3.7627E-07 4.1142E-05 6.0227E-06 8.2531E-06
10 2.5244E-07 2.8026E-07 2.7122E-07 7.3559E-09
11 2.5858E-07 2.8010E-07 2.7233E-07 6.0956E-09
12* 1.0759E-08 1.5207E-07 5.8109E-08 5.4885E-08

Table 5: Results for problem instance 2 (bounds limits 2)

Conf. min max mean std.dev.

1 2.8377E-07 6.6673E-05 3.1407E-05 3.2585E-05
2 2.8374E-07 6.8303E-05 2.6969E-05 3.2684E-05
3* 1.5842E-07 5.7268E-05 4.0895E-06 1.4432E-05
4 2.7990E-07 6.4689E-05 2.0093E-05 2.9648E-05
5 2.7690E-07 6.4605E-05 1.5071E-05 2.7273E-05
6* 2.7946E-07 6.4730E-05 9.5604E-06 2.2130E-05
7 9.6255E-07 6.8549E-05 2.5130E-05 2.1820E-05
8 4.1894E-06 1.0308E-04 3.9904E-05 2.7388E-05
9* 2.6173E-06 9.8096E-05 3.2716E-05 2.8043E-05
10 2.3465E-07 2.8074E-07 2.7184E-07 9.3330E-09
11 2.6700E-07 2.8042E-07 2.7598E-07 3.6866E-09
12* 4.2726E-08 5.2244E-05 6.2791E-06 1.0869E-05

Table 6: Results for problem instance 3 (bounds limits 3)

Conf. min max mean std.dev.

1 2.8375E-07 6.6268E-05 2.9037E-05 3.2477E-05
2 2.8081E-07 6.7234E-05 3.3529E-05 3.2563E-05
3* 2.5709E-07 5.7731E-05 4.7722E-06 1.2639E-05
4 2.7982E-07 6.4710E-05 1.8542E-05 2.8387E-05
5 2.7822E-07 6.4585E-05 1.9311E-05 2.9572E-05
6* 2.7981E-07 6.4671E-05 2.5818E-05 3.1815E-05
7 1.1684E-06 7.7289E-05 3.4576E-05 2.5457E-05
8 8.0244E-06 1.8836E-04 5.3389E-05 3.9135E-05
9* 3.0885E-06 1.2325E-04 5.2677E-05 3.4290E-05
10 2.5898E-07 7.3259E-06 5.0954E-07 1.2874E-06
11 2.5616E-07 7.9723E-06 6.2715E-07 1.4860E-06
12* 4.2251E-08 1.6375E-05 4.0056E-06 4.7001E-06

analysis of the algorithm behavior, with a particular emphasis on
adaptive mechanisms and constraint handling. This approach al-
lows for a deeper exploration of the intricacies involved in applying
metaheuristic algorithms to control engineering applications.

10−8 10−7 10−6 10−5 10−4

1
2
3
4
5
6
7
8
9
10
11
12

CF

In
st
an
ce

Figure 1: Box plots test 1

10−7 10−6 10−5 10−4

1
2
3
4
5
6
7
8
9
10
11
12

CF

In
st
an
ce

Figure 2: Box plots test 2

The results support the need to pay careful attention to the con-
figuration of the metaheuristic algorithm, the choice of its adaptive
techniques, and the setting of its hyperparameters. Focusing on the
individual adaptive features, it can be seen from the convergence
plots 4–6 and box-whisker plots 1–3 that the baseline SOMA only
shows promising results for a smaller range of model parameters
(problem instance 1). However, the adaptive mechanisms for data-
driven population analysis (clustering), switching exploration and
exploitation strategies (even with PRT control similar to SOMA T3A
- see below), and the basic ensemble SOMA do not achieve good
results in all instances. The chosen constraint treatment strategy
did not matter much for these configurations.

Notable results were achieved by SOMA T3A, which includes
adaptive functionality for linear control of the PRT parameter and
specific population organization that can support the exploratory

1827

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Senkerik, et al.

10−7 10−6 10−5 10−4

1
2
3
4
5
6
7
8
9
10
11
12

CF

In
st
an
ce

Figure 3: Box plots test 3

Figure 4: Convergence plot - problem instance 1

capabilities of the algorithm and local search in the later stages of
optimization.

Regarding the constraint treatment techniques, for this specific
case, characterized as "optimum near the domain boundary," it
seems more convenient to use random reinitialization rather than
penalization. However, it has to be acknowledged that by not treat-
ing the constraints (again, due to the specific nature of the con-
straints - fitness can be evaluated, but from a stability perspective
and in the frequency domain, the solution may be infeasible), the
algorithms found the lowest fitness values and thus the evolution-
ary process was probably better supported without interfering
with the population by reinitializing individuals or penalizing. Yet,
subsequent post-hoc analysis showed that very few of these so-
lutions were feasible, and in terms of fitness, these few feasible
solutions have worse fitness than, e.g., the best solution of other
algorithm configurations. Thus, it can be argued that for this type

Figure 5: Convergence plot - problem instance 2

Figure 6: Convergence plot - problem instance 3

of real-world problem, it is advantageous to use an algorithm con-
figuration with an organizing process or sub-populations (even
with partial restarting or injection of individuals) and to control the
exploration-to-exploitation transition. Future research may then in-
clude methods for bound constraints and, of course, identifying the
most important algorithm components for using autoconfiguration
frameworks.

ACKNOWLEDGMENTS
The research presented in this paper was partially supported by:
NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Educa-
tion and Science funds assigned to AGH University of Science and
Technology. It was also supported by Czech Science Foundation
(GACR) project no: GF21-45465L, the Internal Grant Agency of
the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and
resources of A.I.Lab at the Faculty of Applied Informatics, Tomas
Bata University in Zlin (ailab.fai.utb.cz).

1828

SOMA Solving Time Delay System Optimization GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Donald Davendra and Ivan Zelinka. 2016. Self-organizing migrating algorithm.

New optimization techniques in engineering (2016). Publisher: Springer.
[2] Jesica de Armas, Eduardo Lalla-Ruiz, Surafel Luleseged Tilahun, and Stefan

Voß. 2022. Similarity in metaheuristics: a gentle step towards a comparison
methodology. Natural Computing 21, 2 (2022), 265–287.

[3] Quoc Bao Diep, Ivan Zelinka, Swagatam Das, and Roman Senkerik. 2020. SOMA
T3A for Solving the 100-Digit Challenge. In Swarm, Evolutionary, and Memetic
Computing and Fuzzy and Neural Computing (Communications in Computer and
Information Science), Aleš Zamuda, Swagatam Das, Ponnuthurai Nagaratnam
Suganthan, and Bijaya Ketan Panigrahi (Eds.). Springer International Publishing,
Cham, 155–165.

[4] AbsalomEEzugwu, Amit K Shukla, Rahul Nath, Andronicus AAkinyelu, JefferyO
Agushaka, Haruna Chiroma, and Pranab K Muhuri. 2021. Metaheuristics: a
comprehensive overview and classification along with bibliometric analysis.
Artificial Intelligence Review 54 (2021), 4237–4316.

[5] E. Fridman. 2014. Introduction to Time-Delay Systems: Analysis and Control.
Springer International Publishing.

[6] Wenjuan Gu, Yongguang Yu, and Wei Hu. 2017. Artificial bee colony algorithm-
based parameter estimation of fractional-order chaotic system with time delay.
IEEE/CAA Journal of Automatica Sinica 4, 1 (2017), 107–113.

[7] Hubert Guzowski, Maciej Smołka, Aleksander Byrski, Libor Pekar,
Zuzana Kominkova Oplatkova, Roman Senkerik, Radek Matusu, and
Frantisek Gazdos. 2022. Effective Parametric Optimization of Heating-Cooling
Process with Optimum near the Domain Border. In 2022 IEEE 11th International
Conference on Intelligent Systems (IS). IEEE, 1–6.

[8] Nikolaus Hansen. 2009. Benchmarking a BI-population CMA-ES on the BBOB-
2009 function testbed. GECCO (Companion) (07 2009). https://doi.org/10.1145/
1570256.1570333

[9] Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial. https:
//doi.org/10.48550/ARXIV.1604.00772

[10] Shintaro Ikeda and Ryozo Ooka. 2015. Metaheuristic optimization methods for a
comprehensive operating schedule of battery, thermal energy storage, and heat
source in a building energy system. Applied energy 151 (2015), 192–205.

[11] Tomas Kadavy, Michal Pluhacek, Roman Senkerik, and Adam Viktorin. 2019.
The ensemble of strategies and perturbation parameter in self-organizing migrat-
ing algorithm solving CEC 2019 100-digit challenge. In 2019 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 372–375.

[12] Tomas Kadavy, Michal Pluhacek, Adam Viktorin, and Roman Senkerik. 2020. Self-
organizing migrating algorithmwith clustering-aided migration. In Proceedings of
the 2020 genetic and evolutionary computation conference companion. 1441–1447.

[13] Tomas Kadavy, Michal Pluhacek, Adam Viktorin, and Roman Senkerik. 2021.
SOMA-CLP for competition on bound constrained single objective numerical opti-
mization benchmark: a competition entry on bound constrained single objective
numerical optimization at the genetic and evolutionary computation confer-
ence (GECCO) 2021. In Proceedings of the genetic and evolutionary computation
conference companion. 11–12.

[14] Piotr Kipiński, Hubert Guzowski, Aleksandra Urbańczyk, Maciej Smołka, Marek
Kisiel-Dorohinicki, Aleksander Byrski, Zuzana Kominkova Oplatkova, Roman
Senkerik, Libor Pekar, Radek Matusu, et al. 2022. Socio-cognitive Optimization
of Time-delay Control Problems using Evolutionary Metaheuristics. In 2022 IEEE
11th International Conference on Intelligent Systems (IS). IEEE, 1–7.

[15] Guo-Han Lin, Jing Zhang, and Zhao-Hua Liu. 2018. Hybrid particle swarm opti-
mization with differential evolution for numerical and engineering optimization.
International Journal of Automation and Computing 15, 1 (2018), 103–114.

[16] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[17] Wim Michiels and S.-I Niculescu. 2014. Stability, control and computation or
time-delay systems. An eigenvalue based approach. SIAM.

[18] Daniel Molina, Javier Poyatos, Javier Del Ser, Salvador García, Amir Hussain,
and Francisco Herrera. 2020. Comprehensive taxonomies of nature-and bio-
inspired optimization: Inspiration versus algorithmic behavior, critical analysis
recommendations. Cognitive Computation 12 (2020), 897–939.

[19] Mateusz Nabywaniec, Hubert Guzowski, Aleksandra Urbańczyk, Maciej Smolka,
Marek Kisiel-Dorohinicki, Aleksander Byrski, Zuzana Kominkova Oplatkova,
Roman Senkerik, Libor Pekar, Radek Matusu, et al. 2022. Socio-cognitive opti-
mization of time-delay control problems using agent-based metaheuristics. In
2022 IEEE 11th International Conference on Intelligent Systems (IS). IEEE, 1–7.

[20] John A. Nelder and Roger Mead. 1965. A simplex method for function minimiza-
tion. Computer Journal 7 (1965), 308–313.

[21] Libor Pekař, Mengjie Song, Subhransu Padhee, Petr Dostálek, and František
Zezulka. 2022. Parameter identification of a delayed infinite-dimensional heat-
exchanger process based on relay feedback and root loci analysis. Scientific
Reports 12, 1 (03 Jun 2022), 9290. https://doi.org/10.1038/s41598-022-13182-5

[22] Michal Pluhacek, Anezka Kazikova, Tomas Kadavy, Adam Viktorin, and Roman
Senkerik. 2021. Explaining SOMA: the relation of stochastic perturbation to
population diversity and parameter space coverage. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion. 1944–1952.
[23] Lenka Skanderova. 2023. Self-organizing migrating algorithm: review, improve-

ments and comparison. Artificial Intelligence Review 56, 1 (2023), 101–172.
[24] Kenneth Sörensen. 2015. Metaheuristics—the metaphor exposed. International

Transactions in Operational Research 22, 1 (2015), 3–18. ISBN: 0969-6016 Publisher:
Wiley Online Library.

[25] Guohua Wu, Xin Shen, Haifeng Li, Huangke Chen, Anping Lin, and Ponnuthu-
rai N Suganthan. 2018. Ensemble of differential evolution variants. Information
Sciences 423 (2018), 172–186.

[26] G Zames, NM Ajlouni, NM Ajlouni, NM Ajlouni, JH Holland, WD Hills, and DE
Goldberg. 1981. Genetic algorithms in search, optimization and machine learning.
Information Technology Journal 3, 1 (1981), 301–302.

1829

https://doi.org/10.1145/1570256.1570333
https://doi.org/10.1145/1570256.1570333
https://doi.org/10.48550/ARXIV.1604.00772
https://doi.org/10.48550/ARXIV.1604.00772
https://doi.org/10.1038/s41598-022-13182-5

	Abstract
	1 Introduction
	1.1 Related Works and Motivation

	2 Time-delayed System
	2.1 General Description
	2.2 Constrains
	2.3 Challenges for Optimization

	3 Metaheuristic Algorithms
	3.1 Baseline SOMA
	3.2 ESP SOMA
	3.3 SOMA-CLP
	3.4 SOMA T3A

	4 Experiment Design
	5 Results
	6 Discussion and Conslusion
	Acknowledgments
	References

