Check for
Updates

Configuring a Hierarchical Evolutionary Strategy Using
Exploratory Landscape Analysis

Hubert Guzowski
Institute of Computer Science,
AGH University of Krakéw
Krakow, Poland
guzowski@agh.edu.pl

ABSTRACT

Hierarchic Memetic Strategy (HMS) is a stochastic global optimizer
designed to tackle highly multimodal problems. It consists of par-
allel running optimization methods organized in a tree hierarchy.
Depending on the task, different algorithms can be utilized on each
of the levels. In this paper, we incorporate into HMS’s structure
a mechanism for choosing its configuration based on information
gathered by a set of Exploratory Landscape Analysis (ELA) methods
and hyperparametric optimization. We compared the performance
of such configured HMS with a portfolio of proven state-of-the-
art algorithms on the suite of black-box optimization functions.
The results of this work show the efficacy of HMS and provide a
set of default parameters evaluated for algorithms users. The use
of ELA methods to select the configuration of a composite algo-
rithm extends their standard use as part of an algorithm selector
and provides insight into the relationship between exploration and
exploitation for different types of fitness functions.

CCS CONCEPTS

» Theory of computation — Mathematical optimization.

KEYWORDS

Evolutionary algorithm, Continuous single-objective Optimization,
muti-modal optimization, Exploratory Landscape Analysis

ACM Reference Format:

Hubert Guzowski and Maciej Smotka. 2023. Configuring a Hierarchical
Evolutionary Strategy Using Exploratory Landscape Analysis. In Genetic and
Evolutionary Computation Conference Companion (GECCO 23 Companion),
FJuly 15-19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3583133.3596403

1 INTRODUCTION

The No Free Lunch Theorem for optimization [40] states that av-
erage performance on all classes of problems is independent of
the algorithm used. Although the original version of the theorem
applies to discrete problems without restriction on computational

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0120-7/23/07...$15.00
https://doi.org/10.1145/3583133.3596403

1785

Maciej Smotka
Institute of Computer Science,
AGH University of Krakéw
Krakow, Poland
smolka@agh.edu.pl

budget, some weaker versions were also proved that show simi-
lar behavior in more realistic continuous domain scenarios [2, 8].
Guided by such theorems and supported by experimental results,
the field of optimization has focused its efforts on selecting the
right algorithm and its parameters for a given problem as defined
by John Rice [31]. It is a great task, but approaching it through a
lens of meta-learning shows what elements are required to tackle it
[35]. One of them is to compare the performance of different opti-
mization algorithms on an extensive set of problem instances. This
is done through the curation of representative benchmarks. How-
ever, to generalize knowledge beyond the curated cost functions,
some measure of problem similarity is needed. Methods devised
to calculate numerical features that describe the fitness landscape
of a function are referred to under the term exploratory landscape
analysis [22]. Based on their results, we can assign problems to
specific classes, for which we know the best performing algorithms
[23].

Hierarchic Memetic Strategy (HMS) is a development of Hierar-
chic Genetic Search (HGS), which is a hierarchical stochastic global
optimizer first proposed by Schaefer and Kolodziej [34]. HMS was
first introduced by Smotka et al. [36] by adding memetic capabili-
ties to the existing HGS structure. HMS is specifically designed to
handle difficult real-world optimization problems, especially those
related to ill-posed inverse problems with multiple solutions and a
very high cost of objective function evaluation. It consists of a set
of parallel running genetic processes organized in a tree hierarchy.
Processes closer to the root are responsible for exploring the global
problem landscape and finding promising regions. Higher-level
processes are then sprouted in these regions to perform a more
local and precise search. Thus, HMS has built-in mechanisms of
adaptivity as it changes its behavior in promising areas. However,
by maintaining the exploratory properties of lower-level processes
independently of the action of higher ones, we can ensure that the
algorithm will not stagnate and will retain an asymptotic guarantee
of finding a global optimum [33]. HMS composite structure offers a
high level of control over its behavior by choosing algorithms that
work at different levels and parameterizing the tree structure itself.
However, this level of control comes with a high barrier to entry,
especially for users who want to apply HMS out of the box.

In this paper, we enhance the Hierarchic Memetic Strategy by
equipping it with a machine-learning-based mechanism to tune
its configuration to the given problem. We incorporate into its
structure a model that uses Exploratory Landscape Analysis to
gather information about the fitness function at a low cost and
assign it to a category. The requirement of keeping the computa-
tional cost low is directly related to the expected applications of

https://orcid.org/0000-0002-9678-0384
https://orcid.org/0000-0002-3386-0555
https://doi.org/10.1145/3583133.3596403
https://doi.org/10.1145/3583133.3596403
https://doi.org/10.1145/3583133.3596403
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3596403&domain=pdf&date_stamp=2023-07-24

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

the method in real-world problems, where allowing hundreds of
thousands of objective evaluations could mean endless waiting for
the result. Simultaneously, we calculated sets of best-performing
HMS configurations for each function category, which are then
applied to specific problems. Finally, we compared the performance
of HMS configured according to our method with state-of-the-art
optimization algorithms. Another aspect of our work is to make
HMS more accessible. Choosing a proven configuration based on
machine learning tools removes a difficult part of the process from
the standard user while still leaving space for manual configuration
for expert use.

2 RELATED WORKS

Recent years have seen the development of optimization algorithms
towards more versatile forms, which are capable of adaptation to a
given problem and are better at balancing between exploration and
exploitation. Strategies to achieve those improvements vary, but
the most prominent are introducing parameter adaptation mecha-
nisms, hybrid algorithms, and selecting from an algorithm portfolio.
Adapting algorithms’ parameters is often used alongside the two
latter approaches, but when applied on its own, it is also capable of
producing variants of proven algorithms that outperform their pre-
decessors on a wide range of functions [25, 38]. Hybrid algorithms
can be realized by a direct combination of two or more heuristics
in a so-called heterogeneous method [13, 21, 26] or by designing
a hyperheuristic in which a top-level algorithm selects a locally
optimal method [5, 6, 39]. Heterogeneous methods aim to achieve
a synergistic relation between their algorithms that overcomes the
limitations of their components. Hyperheuristics, on the other hand,
are not so focused on specific relations between their components,
but rather are a form of an algorithm selection mechanism where
the knowledge about the best performing algorithm is gathered
during the hyperheuristic execution. Approaches using exploratory
landscape analysis methods are similar to hyperheuristics in that
they choose from a portfolio of algorithms but differ in that the
choice is made once based on the knowledge gained before the
proper algorithm execution.

Although some forms of exploratory landscape analysis (ELA)
were present much earlier, using it to tackle the algorithm selection
problem gained traction with the introduction of inexpensively cal-
culated numerical features [22]. Having a clearly defined problem
and a consistent benchmarking environment in the form of the
Black-Box Optimization Benchmark (BBOB) [11] meant that over
the following years the ELA’s collection of tools grew to include new
effective methods such as nearest-better clustering [15] and ICoFiS
[24]. However, the sources of method implementations remained
scattered among isolated repositories and scientific descriptions,
making it difficult to use them in practice. To overcome this diffi-
culty, the methods were gathered into a centralized package flacco
[18]. Subsequently, Quentin et al. [30] have shown that groups of a
few features are sufficient to classify BBOB functions [11] with 98%
accuracy. In the same benchmark environment, algorithm selection
frameworks based on ELA methods have been shown to be more
effective than any single solver in its portfolio [17]. ELA methods
are mostly applied for algorithm selection rather than for choosing
algorithm configuration. However, the scope of this paper covers

1786

Hubert Guzowski and Maciej Smotka

both of those aspects, as the complex structure of HMS allows the
user to select both the algorithms used on different levels, but also
their parameters.

Our work on the HMS algorithm combines efforts to create
hybrid metaheuristics and the use of ELA methods in a new context
aimed at improving a specific algorithm and making it easier to use.
Classical implementations of HMS used the Simple Evolutionary
Strategy (SEA) as an evolutionary engine in component processes.
In a later work, Sawicki et al. tested the usage of Covariance Matrix
Adaptation - Evolution Strategy (CMA-ES) [10] in the local phase
of HMS, which has been shown to be more efficient in achieving
results of the same quality [32]. The flexibility of HMS has been
shown in a variety of applications for which its core structure can
be tuned. HMS equipped with a multiwinner voting strategy has
been shown to be effective in identifying regions of insensitivity
of a given problem [9]. Recent work on the algorithm includes its
application in neuroevolution [37]. In all of this work, the choice of
the HMS configuration was done using a time-consuming trial-and-
error approach. Our contribution is meant to alleviate the costs of
this process and answer the following set of questions:

e Can we parameterize the HMS based on the classification
done using ELA?

e How does automatically configured the HMS compare with
other general-purpose global evolutionary search algorithms?

3 DESCRIPTION OF HMS WITH ELA
COMPONENT

The core of our HMS implementation does not differ from what was
presented in previous works [32]. Here, we summarize the main
steps for the convenience of the reader. The HMS core begins at
line 4 of Algorithm 1 by sampling a single evolutionary population,
becoming the root of the tree. Then, as long as the global stopping
condition is not satisfied, every active component population (i.e.,
a sub-population) performs a fixed-length series of evolutionary
steps (called a metaepoch), i.e. it executes an appropriate evolution-
ary engine a given number of times, which is abstracted here to a
runMetaepoch() function call. After a metaepoch, each of the sub-
populations can meet a local stopping condition and get deactivated.
In such a case HMS memorizes the best individual spotted by the
sub-population or, if the evolutionary engine is the SEA, it executes
a local optimization method with the best found individual as a
starting point and memorizes the result (lines 11-13). Then, every
sub-population at a non-leaf level tries to sprout a child process at
the next level of the tree by sampling a population around the par-
ent’s current best individual. Afterward, unless the global stopping
condition is satisfied, the strategy goes back to running metaepochs
in active sub-populations. The final result of the HMS core is the
set of individuals memorized by all leaf sub-populations.

A novel aspect of our work is the incorporation of an additional
component responsible for choosing HMS configuration shown in
lines 1-3 of Algorithm 1. At the start of the algorithm execution,
a set of points is generated using Latin hypercube sampling. This
set is used as a basis for calculating a set of ELA feature values
using implementation provided by the flacco package [18]. These
features are an input to a Random Forest classifier that assigns a
function to one of the predefined classes for which we calculated

Configuring a Hierarchical Evolutionary Strategy Using Exploratory Landscape Analysis

the best working configurations beforehand. We decided to use
one of the sets of ELA features evaluated in a work by Quentin et
al. [30]. Specific aspects of training and testing the classifier and
calculating feature sets are described in the following chapter.

Precalculated configurations control both the properties of the
heuristics used and the overarching algorithm structure. In our
implementation configurations are either two- or three-level trees
that use a simple evolutionary algorithm on all levels or swap
out the most local processes with CMA-ES. An implementation
of the SEA algorithm is based on the LEAP Python package [7]
while CMA-ES sub-populations use the Python implementation
provided by pyCMA [12]. Structural hyperparameters subjected to
optimization are the numbers of generations each sub-population
runs during each of the metaepochs, after how many metaepochs
they will become inactive, how many processes can be working
concurrently on levels higher than root level and how far they can
sprout from already existing sub-populations. Parameters specific
to SEA are the magnitude of Gaussian mutation and for levels other
than root level the variance of normal distribution of initial sample
around the sprouting point (best current individual of root). As for
the CMA-ES algorithm, the only parameter subject to optimization
is the initial sigma (step size) value. Population size in that case is
left out to the analytically derived default for this algorithm which
is 4 + 31log(D) rounded to the nearest lower integer.

Algorithm 1: High-level pseudocode of HMS with ELA
component

Input: Objective function f, dimensions and bounds of f
Output: foundOptima of f

ElaFeatureValues « calculateELA(f, dimensions, bounds)

[

FunctionClass « classifyFunction(ElaFeatureV alues)

[N}

©w

treeConfig < chooseAndScaleConfig(FunctionClass,
dimensions, bounds)

'S

root « doSprout(treeConfig[0], 0)
activePopulations < {root}

«

while global stop condition is not satisfied do

Y

7 foreach d in activePopulations do [in parallel]
8 isActive « runMetaepoch(d)
9 if not isActive then

activePopulations < activePopulations\{d}
d.optimum «bestIndividual(d.history)
if d.engine = SEA then

‘ d.optimum < runLocalMethod(d.optimum)

10
11
12
13
foreach d in activePopulations do [in parallel]
if d satisfies sprout condition then
childPopulation «—

doSprout(treeConfig[level(d) + 1], d)
activePopulations «—

activePopulations U {childPopulation}
foundOptima « []
foreach d in leaf populations do

‘ foundOptima «— foundOptima U {d.optimum}

14
15
16

17

=
®

=
S ©

1787

GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal

Table 1: Set of ELA features tested in function classification

ELA feature Source
€ratio ICOFiS [24]
Fitness correlation NBC [15]

Meta model [22]
Meta model [22]

Adjusted linear regression R2
Adjusted quadratic regression R2

4 EXPERIMENTAL PROCEDURE

To answer the questions posed in Section 2 a series of consecutive
experiments was conducted. Each one tests a different building
block of the resulting algorithm. Firstly, we assessed the effective-
ness of function classification using ELA with lower evaluation
budgets. Secondly, we calculated a set of configurations that per-
form best for each class of functions and tried to identify trends in
the parameter values. Lastly, we compared the effectiveness of the
final algorithm in the benchmark environment with state-of-the-art
optimization algorithms.

4.1 Function classification

We based the function classification aspect of our work on the
research on ELA done in previous studies [22, 24, 30] with an em-
phasis on a lower evaluation budget. We verified the effectiveness of
the set of ELA features presented in table 1 in a benchmark environ-
ment. Selection of features was based on a research conducted by
Quentin et al. [30]. The benchmark consisted of 24 BBOB functions
x [2, 3, 5, 10, 20] dimensions x 25 instances which equals to 3000
different function instances in total. Those functions are divided
into five classes with different algorithms that perform best on them
[11, 23]. These classes are: separable functions {f1...f5}, functions
with low or moderate conditioning {f6...f9}, functions with high
conditioning and unimodal {f10...f14}, multimodal functions with
adequate global structure {f15...f19}, and multimodal functions with
weak global structure {f20...24}. As described in [3], the significant
features of BBOB functions differ from each other even among
functions of the same class and therefore are also far apart in the
ELA feature space. Generating different instances of those functions
helps to alleviate this problem and generalize the results.

We applied ELA methods for above mentioned set of functions
using package flacco [18], Latin-Hypercube sampling and evalu-
ation budgets of 15, 25, 50, 100 and 200 individuals per function
dimension respectively. We divided the resulting feature sets using
80/20 ratio into training and test sets and then used to train Ran-
dom Forest classifiers. For consistent results, we repeated splitting
the feature set and training classification model 50 times per each
evaluation budget.

4.2 Calculation of default parameters

Hyperparameter optimization task was assigned to the SMAC3
optimization tool [19]. The optimization process was run with a
budget of 103 hyperparameter evaluations and each one of them
was repeated 2 times during optimization to better account for
the stochastic nature of the process. Each evaluation corresponded
to performing an optimization process on all of the functions in
specific BBOB class with a budget of 104 evaluations for each one

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

of them. It is worth noting that the median number of evaluations
to achieve results deemed as successful of all the algorithms in the
BBOB data is about 10° [3]. The chosen budget is meant to reflect the
usage of HMS in costly real-world problems. Configurations were
evaluated by their quality calculated as a sum of best found optima
for each of optimized functions. We tested three HMS structures
in that manner: two-level tree with SEA at both levels, two-level
tree with CMA-ES used on second level instead and a three-level
tree with SEA at first two levels and CMA-ES at third level. For
each BBOB function class the whole optimization process was run
5 times per each of three chosen HMS configurations giving the
total of 75 resulting hyperparameter sets.

Having obtained the 75 configurations, we performed additional
selection based on another 50 optimization runs for each of the
configurations for each of the functions belonging to its class. We
selected one of the HMS structures based on the number of func-
tions for which their representatives achieved the best average
results. After that we selected a specific configuration among the
five of that general structure based on the same criteria. The result
is a single configuration for each of the function classes.

4.3 Comparison of algorithms performance

The selection of a representative set of algorithms with which we
want to compare the new method is not obvious. In our selection,
we kept in mind that the selected algorithms should be well tested
and give the best results for different classes of functions. The avail-
ability of the algorithm implementation was also important to us.
In the end, we decided to include in the comparative portfolio 2
variants of the Covariance Matrix Adaptation Evolution Strategy
algorithm, a variant of Differential Evolution and the NEWUOA
method. CMA-ES with Diagonal Acceleration (dd-CMA-ES) [1] is
one of the newer variants of this well-established algorithm, which
performs better with separable functions (class 1) without losing
efficiency for the other classes. We have included restarts with in-
creasing population size for this variant. The second variant we
used is bipop-CMA-ES [20], which performs restarts with popu-
lations of different sizes, improving the algorithm’s performance
for multimodal functions (classes 4 and 5). The implementation we
used for both of these variants is available in the pycma library
[12]. The Differential Evolution variant we used is an improved
Success-History based Adaptive DE with the linear population size
reduction mechanism (iL-SHADE) [4]. It gives better results than
its original, which was the best-rated DE variant. iL-SHADE is very
effective for multimodal functions, which is well complemented
by the choice of the CMA-ES algorithm. The implementation of iL-
SHADE that we used is available in the pyade library [29] The last
algorithm compared is NEWUOA [27], which does very well with
the average evaluation budget for highly dimensional functions.
Despite being developed in 2006, NEWUOA continues to perform
very well compared to the new algorithms for unimodal functions
in particular. We used the implementation of NEWUOA available
in pdfo library [28]. We also considered using SMAC-BBOB [14] for
comparison, which also has competetive advantages in benchmark
environment, but as the authors of the algorithm noted, SMAC-
BBOB is overperformed by CMA-ES somewhere between 10D and

1788

Hubert Guzowski and Maciej Smotka

100D evaluations and we use 100D evaluations in our comparison
(D is the problem dimensionality).

We benchmark HMS against the presented portfolio of algo-
rithms and present the results obtained both when using only con-
figurations assigned to a specific class and chosen accordingly to
the accuracy of classification of a machine learning model tested in
previous steps. We run each algorithm 50 times on first instance of
each function included in BBOB continuous optimization bench-
mark with a total budget of 10* evaluations. Resulting best found
fitnesses are then normalized by subtracting the value of known
global optimum. We did not implement any mechanism that would
cut off errors lower than some specific precision, instead relying on
the precision of Python floating-point arithmetic and mechanisms
specific to libraries used. To properly reflect the cost of parameter
selection process, evaluations used for choosing a configuration
were subtracted from the budget of HMS. To additionaly test if
the configurations obtained for HMS during hyperoptimization
process could generalize from the original 10-dimensional test bed,
we performed optimization both in 10 and 20 dimensions without
changing or upscaling the parameters (with the exception of CMA-
ES sub-populations, which used default population values of that
algorithm, which have built-in scaling). To ensure that HMS does
not exceed its evaluation budget during runtime, we implemented
a wrapper over BBOB functions that counted the number of eval-
uations and when exceeding it, returned positive infinity instead
of a function value. For other functions we relied on mechanisms
included in their implementation.

5 RESULTS

This section presents the results of the experiments carried out in
subsections which correspond to their descriptions in Section 4.

5.1 Classification results

Our results do not show a significant decrease in quality when using
50 evaluations per dimension when using the feature set presented
in table 1. See figure 1. The results are in line with conclusions
derived by Kerschke et al. when testing the effectiveness of ELA
on lower budgets [16]. However, most of the works use a number
of individuals higher than 100 individuals per function dimension
[3, 22, 24]. Note that in following benchmarks we use budgets of
10* order of magnitude while the median of expected number of
evaluations to achieve results deemed as succesful at BBOB compe-
titions is around 10° so such an upfront cost although justifiable
in other context, cannot be amortized in our application. Thus we
decided on using a classifier trained on 50 evaluations per function
dimension for HMS.

Accuracy achieved for each of the BBOB classes is presented in
figure 2. We achieved an accuracy rate of 91,89% for all combined
classes. Separable and multimodal functions with weakly defined
structure were classified with highest accuracy which is in line
with intuition that those classes are the most distinct. Classes 2, 3
and 4 were mainly incorrectly classified within these three classes.
At the same time, the lower scores for those three classes were not
evenly distributed among their functions. In particular, instances
7, 14, 17 and 18 were relatively often assigned incorrectly while
errors were rather rare in the other instances. These errors may be

Configuring a Hierarchical Evolutionary Strategy Using Exploratory Landscape Analysis

SR

>
8 0% +
E
8
< 88%
86%
% '
¢
15 2%

GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal

100 200

Figure 1: Classification accuracy per number of evaluations per dimension in initial sample

Table 2: Confusion matrix for Random Forest classifier trained on ELA results

Output class Total rates of
{f1..£5} {f6...f9} {f10...f14} {f15...f19} {f20...£24} success/failure

{f1..£5} 20% 0,097% 0,18% 0,14% 0.0% 97.9% 2.0%
Target 1615} 0,35% 15% 0,26% 0,99% 0,04% 89.8% 10.2%
) {f10..f14} | 0,65% 0,72% 18% 1,5% 0,0% 86,4% 13,6%
cass - up15 £19) | 0,21% 0,68% 1,0% 18% 0,65% 87.6% 124%

{f20..£24} | 0% 0,15% 0% 0,48% 20% 97.0% 3,0%

Total rates of 94,3% 89.8% 86,4% 87.6% 97.0% 91,89%

success/failure 5,7% 10,2% 13,6% 12,4% 3.0% 8,11%

Table 3: Tree structure and parameters of algorithm controlling the proportion of budget for first and second level of HMS
algorithm for different function classes. The cma caption in the column indicates the use of the default population size for the
CMA-ES algorithm, which is 10 and 12 for 10 and 20-dimensional functions, respectively.

Level 1 Level 2
function set ‘ choosen configuration | population ‘ generations | population ‘ generations | upper limit of processes
{f1..f5} 2 level with cma leafs 22 2 cma 3 3
{f6...f9} 2 level with sea leafs 29 3 20 2 10
{f10..f14} 2 level with cma leafs 21 2 cma 10 6
{f15...£19} 2 level with cma leafs 25 2 cma 9 5
{f20...£24} 2 level with sea leafs 78 2 35 6 4

due to a defect in the classifier, or rather, they may indicate certain
properties of the functions as appearing on a spectrum between
classes rather than belonging to any particular one. Although, even
those function instances were most often classified as their true
BBOB class. However, what is the impact of misclassification and
consequent use of a different set of parameters, will only be shown
in subsequent tests.

5.2 Resulting default parameters

The results of the parameter selection process give us an insight
into how global optimization algorithms work and how flexibly the
HMS algorithm can be adapted to different tasks. In this section,
we have chosen to concisely include what we believe are the most
important elements of the setup that provide the most interesting
conclusions.

1789

Among the 3 configurations tested, the three-level HMS tree
did not give the best results for almost any function. Among the
two two-level structures, we could clearly observe better results
for one of the categories in the case of classes 1, 4 and 5, where
the ratio of the number of functions for which the structure gave
the best results was 7:3 for class 1 and 4, respectively, while for
class 5 in each case better results were achieved when CMA-ES was
used in the algorithm. For class 2 and 3, the ratios were 3:5 and 4:6,
respectively. The configurations selected based on the number of
functions for which they gave the best results are listed in column
2 of table 3.

Table 3 shows what population sizes and generations per metae-
poch were set for the best configurations for each class. The ratio
of the products of these two values for the two levels translates

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

directly into the proportion of the budget allocated to the opera-
tion of both of them. We can, according to the assumptions of the
HMS algorithm, equate this ratio with the relationship between
the property of exploration and exploitation of the algorithm. This
interpretation coincides with the results obtained and confirms the
possibility of adjusting the behavior of the HMS algorithm in this
way. As we can see in table 3, for function class 5, the parameters
obtained direct the HMS operation to the highest degree towards
exploration, which is consistent with the multimodality and weak
global structure of these functions. The configurations of classes 1,
3 and 4 do not differ significantly in the number of generations and
population sizes, but for the first class we can observe in this case a
clearly smaller upper limit of parallel processes at the second level.
Such a value, in our interpretation, corresponds to the unimodal
and separable nature of these functions, which in effect makes more
processes at the second level unnecessary, since they would occupy
the same optimum with high probability.

5.3 Comparison results

We tested HMS against dd-CMA-ES [1], BIPOP-CMA-ES [20], iL-
SHADE [4] and NEWUOA [27] on 10 and 20-dimensional first
instances of Black Box Optimization noiseless continuous test suite.
We include two sets of results for HMS. First column of table 4
shows the effectiveness of the algorithm when configured using
the set of parameters calculated for its BBOB function class. Sec-
ond column takes into account the inaccuracy of the classifier and
includes weigted average and variance of results obtained in first
column and those obtained using the configurations calculated for
other function classes in proportions corresponding to the rates of
classification to those classes as calculated in first experiment 4.2.
Out of all 48 functions included in our test suite misclassifications
appeared in 17. Out of those 17, in 12 functions we observed the loss
in quality of solutions due to those errors. Having in mind, that in
practice the algorithm operates on a singular classifier and that each
of the presented functions is most often classified as its true BBOB
class, we treat the results from the first column as representative
for HMS performance.

We have highlighted the best results achieved for each function
in table 4. We exempted the second column from that comparison
as mostly duplicates the results from the first column and as men-
tioned, its purpose is rather to show theoretical expected values,
when adjusted for the innacuracy of the classifier. HMS produced
the best or equal best results in 19 out of the 48 test cases. Accord-
ing to its purpose, it performed better for multimodal functions
than unimodal ones, for which maintaining exploration throughout
the algorithm’s operation is not as important. At the same time it
achieved at least one best or equal best result for every one of 5
function classes. Overall HMS performs on par with compared state-
of-the-art methods on most of the problems included in our test
suite which shows its flexibility when parameterized accordingly.
Still there are function instances, for which HMS performs consid-
erable worse than other algorithms. Those are specifically functions
characterized by a better defined unimodal structure, for which
other algorithms are able to exploit the minimas better, than HMS.
In those cases the cost connected with maintaining exploratory
qualities of root node and simultaneous executions of more than

1790

Hubert Guzowski and Maciej Smotka

one sub-population at lower levels makes it less likely that HMS
will locate the minima as precisely as the algorithms focused more
on exploitation for the same evaluation budget. Interestingly, HMS
did better when applied to 20-dimensional problems despite the
fact that the hyperparameter optimization process was performed
solely on 10-dimensional functions. Higher-dimensional problems
are harder to solve, which is manifested in the overall worse perfor-
mance of optimization algorithms, but HMS and iL-SHADE scale
quite well to tackle those problems and are more likely to outper-
form variants of CMA-ES. These results reinforce our assumption
about the use of HMS to solve difficult multi-modal problems.

6 CONCLUSIONS

In this paper, we introduced a machine-learning mechanism for
selecting a configuration of Hierarchic Memetic Strategy algorithm
based on values derived using Exploratory Landscape Analysis. We
selected a set of ELA features, calculated their values on a suite of
functions from Black Box Optimization Benchmark and used them
to train a classifier which assigns a problem to one of five classes
distinguished in BBOB benchmark. We performed hyperparametric
optimization to derive the best performing configurations of HMS
for each of those classes and finally compared the resulting algo-
rithm with a portfolio of state-of-the-art optimization algorithms
on a moderate evaluation budget.

The classification results obtained and the fitness function values
obtained for the test functions confirm the validity of using a ma-
chine learning model to determine HMS configurations. The results
obtained in this way are on par with state-of-the-art algorithms
for each class of functions and for multimodal functions with weak
global structure, the competitive advantage of HMS is apparent.
At the same time, the obtained parameter sets are in line with the
intuition on the relationship between exploration and exploitation
for different classes of functions. This shows the flexibility of the
HMS mechanism and the adaptivity of its structure to features of
considered problems.

The current results are promising although they are achieved
in a benchmark setting under specific conditions. In future works
we plan to further prove the capabilities of configuration selec-
tion mechanism by performing more robust tests and applying the
method to real-world optimization problems.

ACKNOWLEDGMENTS

The research presented in this paper was partially supported by the
Polish National Science Center under grant No. 2020/39/1/ST7/02285
and by the funds of the Polish Ministry of Science and Education
assigned to the AGH University of Krakow.

REFERENCES

[1] Y. Akimoto and N. Hansen. 2020. Diagonal Acceleration for
Covariance Matrix Adaptation Evolution Strategies. Evolution-
ary Computation 28, 3 (09 2020), 405-435. https://doi.org/

10.1162/evco_a_00260 arXiv:https://direct.mit.edu/evco/article-
pdf/28/3/405/1858973/evco_a_00260.pdf

Anne Auger and Olivier Teytaud. 2010. Continuous Lunches Are Free Plus the
Design of Optimal Optimization Algorithms. Algorithmica 57, 1 (01 May 2010),
121-146. https://doi.org/10.1007/s00453-008-9244-5

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Mike Preuss. 2012. Algo-
rithm Selection Based on Exploratory Landscape Analysis and Cost-Sensitive
Learning. In Proceedings of the 14th International Conference on Genetic and

https://doi.org/10.1162/evco_a_00260
https://doi.org/10.1162/evco_a_00260
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/28/3/405/1858973/evco_a_00260.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/28/3/405/1858973/evco_a_00260.pdf
https://doi.org/10.1007/s00453-008-9244-5

Configuring a Hierarchical Evolutionary Strategy Using Exploratory Landscape Analysis GECCO 23 Companion, July 15-19, 2023, Lisbon, Portugal

Table 4: Comparison results between HMS with calculated configurations, adjusted for classification errors and algorithms in
portfolio. Each column contains average value of fitness and its variance in brackets.

HMS | adjusted HMS | dd-CMA-ES | BIPOP-CMA-ES | iL-SHADE | NEWUOA
10 dimensions
f1 | 9.4e-15 (7.8¢-15) 9.4e-15 (7.8¢-15) 4.3e-16 (2.4¢-15) 1.2e-14 (9.6e-15) 1.1e-14 (1.2¢-14) 0.0e+00 (0.0¢+00)
£2 | 7.7e-01 (1.2e+00) | 7.6e-01 (1.2e+00) | 0.0e+00 (0.0e+00) | 1.6e-14 (2.6e-14) 1.3e-11 (3.4e-11) 1.2e+00 (1.5e+00)
3 | 8.4e+00 (3.1e+00) | 8.4e+00 (3.1e+00) | 4.6e+00 (2.0e+00) | 7.8e+00 (3.7e+00) | 1.1e+01 (3.7e+00) | 1.3e+02 (6.8e+01)
f4 | 1.4e+01 (4.7e+00) | 1.4e+01 (4.7¢+00) | 1.0e+01 (2.8¢+00) | 1.1e+01 (3.8¢+00) | 1.2e+01 (3.6e+00) | 1.8e+02 (1.3e+02)
f5 | 6.8e-15 (2.4e-14) 6.8e-15 (2.4e-14) 0.0e+00 (0.0e+00) | 0.0e+00 (0.0e+00) | 1.1e-11 (5.1e-11) 0.0e+00 (0.0e+00)
f6 | 7.2e-01 (3.7e+00) | 7.2e-01 (3.7e+00) | 6.0e-13 (5.5e-13) 5.0e-13 (3.2¢-13) | 3.2¢-05 (5.0e-05) 1.3e-04 (8.1e-04)
£7 | 1.1e+00 (6.5e-01) 1.0e+00 (6.1e-01) 1.9e-14 (2.6e-14) | 1.8e-13 (1.3e-12) 2.8e-03 (2.6e-02) 8.2e+01 (7.5e+01)
8 | 1.2e-08 (1.1e-08) | 1.2¢-08 (1.1e-08) 1.9e-01 (8.0e-01) 1.1e-01 (4.9e-01) 2.7e+00 (1.2e+00) | 8.0e-01 (1.6e+00)
f9 | 3.7e-08 (3.7¢-08) | 3.7¢-08 (3.7¢-08) 1.1e-01 (5.5e-01) 9.7¢-02 (4.7e-01) 4.0e+00 (1.2¢+00) | 1.1e+00 (1.8e+00)
f10 | 1.0e+00 (6.8e+00) | 1.0e+00 (6.8¢+00) | 1.5e-14 (1.4e-14) | 1.7e-14 (1.4e-14) 3.0e-01 (1.7e+00) 1.3e+00 (1.8¢+00)
f11 | 1.5e+00 (5.9¢+00) | 1.5¢+00 (5.9¢+00) | 1.2e-14 (7.4e-15) | 1.2e-14 (8.4e-15) | 3.1e-02 (2.3e-01) 3.0e-02 (5.1e-02)
f12 | 1.8¢+00 (2.6e+00) | 1.8e+00 (2.6e+00) | 2.3e-05 (1.9e-04) | 1.2e-04 (8.8e-04) 6.6e-01 (9.0e-01) 6.6e-03 (2.7e-02)
£13 | 7.8e-03 (2.9¢-02) 7.8e-03 (2.9e-02) 1.9e-06 (1.4e-05) 5.8e-07 (2.2-06) | 6.1e-03 (1.1e-02) 7.2e+00 (8.9e+00)
f14 | 1.1e-11 (9.4e-12) 1.2e-11 (9.8e-12) 9.8¢-12 (6.1e-12) 8.5e-12 (5.0e-12) | 2.4e-06 (4.6e-06) 5.7e-06 (1.5e-06)
f15 | 1.0e+01 (5.2e+00) | 1.0e+01 (5.2e+00) | 6.3e+00 (3.7e+00) | 6.1e+00 (2.9¢+00) | 1.2e+01 (3.8e+00) | 1.9e+02 (1.1e+02)
f16 | 3.0e-01 (3.7e-01) | 5.0e-01 (4.1e-01) 5.2e-01 (5.4e-01) 3.8¢-01 (6.5¢-01) 2.0e+00 (1.3e+00) | 1.7e+01 (9.9e+00)
£17 | 9.5e-02 (1.7¢-01) 1.8e-01 (2.3e-01) 9.1e-02 (2.8e-01) 4.4e-02 (2.6e-01) 3.0e-04 (3.7e-04) | 1.7e+01 (1.7e+01)
f18 | 6.4e-01 (1.1e+00) | 1.1e+00 (1.3e+00) | 2.8e-01 (5.3e-01) 9.1e-02 (3.6e-01) 1.1e-02 (5.9e-02) | 7.1e+01 (7.8e+01)
£19 | 2.1e+00 (1.4e+00) | 2.1e+00 (1.4e+00) | 1.1e+00 (7.7e-01) 1.0e+00 (7.4e-01) | 1.9e+00 (4.7e-01) | 7.3e+00 (4.7e+00)
£20 | 1.2e+00 (2.3e-01) | 1.2e+00 (2.3e-01) 1.2e+00 (3.0e-01) | 1.4e+00 (2.8¢-01) 1.5e+00 (2.5e-01) 1.6e+00 (3.5¢-01)
f21 | 1.4e+00 (1.4e+00) 1.4e+00 (1.4e+00) 1.4e+00 (1.5e+00) 1.0e+00 (9.8e-01) 3.5e+00 (5.1e+00) 1.7e+01 (1.7e+01)
£22 | 1.3e+00 (8.6e-01) | 1.3e+00 (8.6e-01) | 2.5e+00 (1.0e+00) | 2.4e+00 (5.8e-01) | 2.7e+00 (1.2e+00) | 2.1e+01 (2.1e+01)
£23 | 1.0e+00 (4.4e-01) 1.0e+00 (4.4e-01) | 9.6e-01 (7.1e-01) | 1.1e+00 (7.2e-01) 1.5e+00 (3.0e-01) 1.5e+00 (8.4e-01)
f24 | 2.0e+01 (5.8e+00) 2.0e+01 (5.8e+00) 2.2e+01 (1.0e+01) 2.2e+01 (9.4e+00) 2.9e+01 (8.3e+00) 2.1e+02 (8.1e+01)
20 dimensions
f1 | 1.6e-14 (4.6e-15) 1.6e-14 (4.6e-15) 9.2¢-15 (6.8¢-15) 1.9e-14 (8.6e-15) 1.4e-05 (1.6e-05) 0.0e+00 (0.0e+00)
2 | 7.4e+01 (3.4e+01) | 7.4e+01 (3.4e+01) | 4.8e-14 (2.1e-14) | 9.4e+00 (2.2e+01) | 9.7e-01 (2.4e+00) | 1.5e+01 (1.6e+01)
f3 | 2.7e+01 (7.0e+00) 2.7e+01 (7.0e+00) 1.8e+01 (5.4e+00) 3.3e+01 (1.3e+01) 7.3e+01 (1.2e+01) 3.9e+02 (2.0e+02)
f4 | 3.9e+01 (1.0e+01) | 3.9e+01 (1.0e+01) | 2.9e+01 (8.4e+00) | 4.3e+01 (1.3e+01) | 8.9e+01 (1.2e+01) | 4.5e+02 (2.1e+02)
f5 | 8.5e-14 (0.0e+00) | 8.5e-14 (0.0e+00) | 8.5e-14 (0.0e+00) | 8.5e-14 (0.0e+00) | 2.7e-02 (2.4e-02) 8.5e-14 (0.0e+00)
f6 | 7.8e+02 (5.4e+06) | 6.1e+02 (1.3e+03) | 1.4e-07 (2.26-07) 8.3e-08 (3.0e-07) | 2.5e+00 (1.1e+00) | 5.3e-07 (5.1e-06)
£7 | 8.8¢+00 (1.1e+01) | 9.1e+00 (2.9e+00) | 1.5e+00 (9.7e-01) 1.9e+00 (2.9¢+00) | 1.1e+00 (8.2e-01) | 2.2e+02 (2.9e+02)
f8 | 2.5e-08 (2.4e-16) 2.8e-08 (1.5e-08) 2.7e+00 (1.9e+00) 6.2e+00 (7.0e+00) 1.6e+01 (1.3e+00) 6.0e-01 (1.4e+00)
f9 | 8.4e-08 (3.2e-15) | 7.0e-08 (4.3¢-08) 4.8¢+00 (2.3e+00) | 5.3e+00 (2.3e+00) | 1.7e+01 (8.6e-01) 1.2e+00 (1.8e+00)
f10 | 7.2e+00 (1.8e+01) 7.2e+00 (1.8e+01) 1.1e+01 (2.9e+01) 9.2e+00 (2.0e+01) 4.9e+02 (3.5e+02) 1.9e+01 (2.1e+01)
f11 | 2.3e+00 (7.9¢+00) | 2.3e+00 (7.9e+00) | 2.3e-14 (2.0e-14) 2.1e-14 (9.9e-15) | 5.7e+00 (3.6e+00) | 3.6e+01 (4.6e+01)
f12 | 2.2e-01 (8.6e-01) | 2.2¢-01 (8.6e-01) 1.4e+00 (3.6e+00) | 1.9e+00 (9.8¢+00) | 3.1e+01 (5.4e+01) | 3.4e-01 (1.3e+00)
f13 | 2.5e-01(6.7e-01) | 2.6e-01 (6.7e-01) 3.2e-01 (5.7e-01) 4.6e-01 (8.1e-01) 3.8e+00 (2.7e+00) | 7.4e+00 (1.1e+01)
f14 | 3.9e-09 (3.1e-09) | 8.5¢-07 (3.0e-06) 2.8¢-07 (1.7e-07) 2.9e-07 (1.7e-07) 1.8e-03 (9.2e-04) 1.8e-05 (1.8e-06)
f15 | 2.5e+01 (7.3e+00) 2.7e+01 (7.8e+00) 2.8e+01 (1.1e+01) 3.3e+01 (1.0e+01) 8.7e+01 (1.2e+01) 4.5e+02 (1.7e+02)
£16 | 5.1e-01 (4.0e-01) | 1.5e+00 (5.0e-01) | 4.5e+00 (2.7e+00) | 4.0e+00 (2.9e+00) | 1.1e+01 (2.7e+00) | 2.2e+01 (1.1e+01)
£17 | 3.4e-02 (5.8¢-02) | 5.2¢-02 (6.9¢-02) 4.9¢-01 (5.5¢-01) 1.4e-01 (2.7e-01) 7.3e-02 (6.6e-02) 1.4e+01 (8.7e+00)
f18 | 4.6e-01 (7.2e-01) 7.4e-01 (8.2e-01) 1.7e+00 (2.2e+00) 6.8e-01 (9.4e-01) 4.4e-01 (2.5e-01) 6.0e+01 (2.7e+01)
£19 | 4.2e+00 (1.6e+00) | 4.2e+00 (1.6e+00) | 3.1e+00 (1.7e+00) | 3.3e+00 (1.6e+00) | 4.3e+00 (4.3e-01) 9.4e+00 (4.1e+00)
20 | 1.5e+00 (1.5e-01) 1.5e+00 (1.5e-01) 1.6e+00 (2.2e-01) 1.7e+00 (2.2e-01) 2.6e+00 (1.5e-01) 1.7e+00 (3.0e-01)
£21 | 1.9e+00 (2.2e+00) | 1.9e+00 (2.2e+00) | 2.6e+00 (2.6e+00) | 2.4e+00 (2.7e+00) | 5.7e+00 (7.5e-01) | 1.3e+01 (1.5e+01)
£22 | 3.3¢+00 (4.4e+00) | 3.4e+00 (4.5e+00) | 5.5e+00 (1.0e+01) | 5.2e+00 (8.8e+00) | 5.5e-03 (1.2¢-02) | 2.6e+01 (2.5¢+01)
£23 | 1.5e+00 (5.0e-01) | 1.5e+00 (5.0e-01) | 2.2e+00 (1.2e+00) | 2.5e+00 (1.0e+00) | 2.6e+00 (4.0e-01) | 1.7e+00 (9.3e-01)
£24 | 6.9e+01 (1.3e+01) | 6.9e+01 (1.3e+01) | 6.1e+01 (3.4e+01) | 7.7e+01 (4.2e+01) | 1.1e+02 (1.5e+01) | 5.3e+02 (1.3e+02)

1791

GECCO ’23 Companion, July 15-19, 2023, Lisbon, Portugal

Evolutionary Computation. Association for Computing Machinery, New York, NY,
USA, 313-320. https://doi.org/10.1145/2330163.2330209

[4] Janez Brest, Mirjam Sepesy Maucec, and Borko Boskovi¢. 2016. iL-SHADE:

(5

[7

8

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

=

=

[

=

]

]

]

)

]

]

Improved L-SHADE algorithm for single objective real-parameter optimization.
In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, Vancouver,
Canada, 1188-1195. https://doi.org/10.1109/CEC.2016.7743922

Edmund K. Burke, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, En-
der Ozcan, and John R. Woodward. 2019. A Classification of Hyper-Heuristic
Approaches: Revisited. In Handbook of Metaheuristics, Michel Gendreau and
Jean-Yves Potvin (Eds.). Springer International Publishing, Cham, 453-477.
https://doi.org/10.1007/978-3-319-91086-4_14

Olacir R. Castro, Gian Mauricio Fritsche, and Aurora Pozo. 2018. Evaluating se-
lection methods on hyper-heuristic multi-objective particle swarm optimization.
Journal of Heuristics 24, 4 (01 08 2018), 581-616. https://doi.org/10.1007/s10732-
018-9369-x

Mark A. Coletti, Eric O. Scott, and Jeffrey K. Bassett. 2020. Library for Evolutionary
Algorithms in Python (LEAP). In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion (Canctn, Mexico) (GECCO °20). Association
for Computing Machinery, New York, NY, USA, 1571-1579. https://doi.org/10.
1145/3377929.3398147

Stefan Droste, Thomas Jansen, and Ingo Wegener. 2002. Optimization with
randomized search heuristics—the (A)NFL theorem, realistic scenarios, and dif-
ficult functions. Theoretical Computer Science 287, 1 (2002), 131-144. https:
//doi.org/10.1016/S0304-3975(02)00094-4 Natural Computing.

Piotr Faliszewski, Jakub Sawicki, Robert Schaefer, and Maciej Smolka. 2017.
Multiwinner Voting in Genetic Algorithms. IEEE Intelligent Systems 32, 1 (2017),
40-48. https://doi.org/10.1109/MIS.2017.5

Nikolaus Hansen. 2005. The CMA Evolution Strategy: A Tutorial. https:
//hal.inria.fr/hal-01297037 ArXiv e-prints, arXiv:1604.00772, 2016, pp.1-39.
Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. 2009. Real-
Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup. Re-
search Report RR-6828. INRIA. https://hal.inria.fr/inria-00362649

Nikolaus Hansen, yoshihikoueno, ARF1, Gabriela Kadlecova, Kento Nozawa, Luca
Rolshoven, Matthew Chan, Youhei Akimoto, brieglhostis, and Dimo Brockhoff.
2023. CMA-ES/pycma: r3.3.0. GitHub. https://doi.org/10.5281/zenodo.7573532
Kyle Robert Harrison, Andries P. Engelbrecht, and Beatrice M. Ombuki-Berman.
2017. An adaptive particle swarm optimization algorithm based on optimal
parameter regions. In 2017 IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, Honolulu, HI, USA, 1-8. https://doi.org/10.1109/SSCL.2017.8285342
Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. 2013. An Evaluation
of Sequential Model-Based Optimization for Expensive Blackbox Functions.
In Proceedings of the 15th Annual Conference Companion on Genetic and Evo-
lutionary Computation (Amsterdam, The Netherlands) (GECCO 13 Compan-
ion). Association for Computing Machinery, New York, NY, USA, 1209-1216.
https://doi.org/10.1145/2464576.2501592

Pascal Kerschke, Mike Preuss, Simon Wessing, and Heike Trautmann. 2015.
Detecting Funnel Structures by Means of Exploratory Landscape Analysis. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion (Madrid, Spain) (GECCO ’15). Association for Computing Machinery, New
York, NY, USA, 265-272. https://doi.org/10.1145/2739480.2754642

Pascal Kerschke, Mike Preuss, Simon Wessing, and Heike Trautmann. 2016. Low-
Budget Exploratory Landscape Analysis on Multiple Peaks Models. In Proceedings
of the Genetic and Evolutionary Computation Conference 2016 (Denver, Colorado,
USA) (GECCO ’16). Association for Computing Machinery, New York, NY, USA,
229-236. https://doi.org/10.1145/2908812.2908845

Pascal Kerschke and Heike Trautmann. 2019. Automated Algorithm Selection on
Continuous Black-Box Problems by Combining Exploratory Landscape Analysis
and Machine Learning. Evolutionary Computation 27, 1 (3 2019), 99-127. https:
//doi.org/10.1162/evco_a_00236

Pascal Kerschke and Heike Trautmann. 2019. Comprehensive Feature-Based
Landscape Analysis of Continuous and Constrained Optimization Problems Using
the R-package flacco. In Applications in Statistical Computing — From Music Data
Analysis to Industrial Quality Improvement, Nadja Bauer, Katja Ickstadt, Karsten
Liibke, Gero Szepannek, Heike Trautmann, and Maurizio Vichi (Eds.). Springer,
Cham, 93-123. https://doi.org/10.1007/978-3-030-25147-5_7

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter.
2022. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization. Journal of Machine Learning Research 23, 54 (2022), 1-9. http:
//jmlr.org/papers/v23/21-0888. html

Ilya Loshchilov, Marc Schoenauer, and Michele Sebag. 2013. Bi-Population
CMA-ES Agorithms with Surrogate Models and Line Searches. In Proceed-
ings of the 15th Annual Conference Companion on Genetic and Evolutionary
Computation (Amsterdam, The Netherlands) (GECCO ’13 Companion). Asso-
ciation for Computing Machinery, New York, NY, USA, 1177-1184. https:
//doi.org/10.1145/2464576.2482696

1792

[21]

[22]

(23]

™
=)

™
S

(28]

[29

[30

[33

[34

[35

&
2

[37

[38

[39

[40]

Hubert Guzowski and Maciej Smotka

Jacek Maridziuk and Adam Zychowski. 2016. A memetic approach to vehicle
routing problem with dynamic requests. Applied Soft Computing 48 (2016), 522—
534. https://doi.org/10.1016/j.as0¢.2016.06.032

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs,
and Giinter Rudolph. 2011. Exploratory Landscape Analysis. In Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation (Dublin,
Ireland) (GECCO ’11). Association for Computing Machinery, New York, NY,
USA, 829-836. https://doi.org/10.1145/2001576.2001690

Olaf Mersmann, Mike Preuss, and Heike Trautmann. 2010. Benchmarking Evolu-
tionary Algorithms: Towards Exploratory Landscape Analysis. In Parallel Problem
Solving from Nature, PPSN XI, Robert Schaefer, Carlos Cotta, Joanna Kotodziej, and
Giinter Rudolph (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 73-82.
Mario A. Muiioz, Michael Kirley, and Saman K. Halgamuge. 2015. Exploratory
Landscape Analysis of Continuous Space Optimization Problems Using Informa-
tion Content. IEEE Transactions on Evolutionary Computation 19, 1 (2015), 74-87.
https://doi.org/10.1109/TEVC.2014.2302006

Duc Manh Nguyen. 2018. An Adapting Population Size Approach in the CMA-
ES for Multimodal Functions. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (Kyoto, Japan) (GECCO ’18). Association for
Computing Machinery, New York, NY, USA, 219-220. https://doi.org/10.1145/
3205651.3205801

Michat Okulewicz, Mateusz Zaborski, and Jacek Mandziuk. 2022. Self-Adapting
Particle Swarm Optimization for continuous black box optimization. Applied Soft
Computing 131 (2022), 109722. https://doi.org/10.1016/j.as0c.2022.109722

M. J. D. Powell. 2006. The NEWUOA software for unconstrained optimization
without derivatives. In Large-Scale Nonlinear Optimization, G. Di Pillo and
M. Roma (Eds.). Springer US, Boston, MA, 255-297. https://doi.org/10.1007/0-
387-30065-1_16

T. M. Ragonneau and Z. Zhang. 2023. PDFO: a cross-platform package for Powell’s
derivative-free optimization solvers. arXiv:2302.13246.

David Criado Ramoén. 2023. PyADE: Python Advanced Differential Evolution.
GitHub. https://github.com/xKuZz/pyade

Quentin Renau, Johann Dreo, Carola Doerr, and Benjamin Doerr. 2021. Towards
Explainable Exploratory Landscape Analysis: Extreme Feature Selection for Clas-
sifying BBOB Functions. In Applications of Evolutionary Computation, Pedro A.
Castillo and Juan Luis Jiménez Laredo (Eds.). Springer International Publishing,
Cham, 17-33.

John R. Rice. 1976. The Algorithm Selection Problem. Advances in Computers 15
(1976), 65-118. https://doi.org/10.1016/S0065-2458(08)60520-3

Jakub Sawicki, Marcin Lo$, Maciej Smotka, and Julen Alvarez-Aramberri. 2019.
Using Covariance Matrix Adaptation Evolutionary Strategy to boost the search
accuracy in hierarchic memetic computations. Journal of Computational Science
34(2019), 48-54. https://doi.org/10.1016/j.jocs.2019.04.005

Jakub Sawicki, Marcin Los, Maciej Smotka, and Robert Schaefer. 2022. Understand-
ing Measure-Driven Algorithms Solving Irreversibly Ill-Conditioned Problems.
Natural Computing 21 (6 2022), 289—-315. https://doi.org/10.1007/s11047-020-
09836-w

Robert Schaefer and Joanna Kolodziej. 2002. Genetic Search Reinforced by the
Population Hierarchy. In Proceedings of the Seventh Workshop on Foundations of
Genetic Algorithms, September 2-4, 2002, Kenneth De Jong, Riccardo Poli, and
Jonathan E. Rowe (Eds.). Morgan Kaufmann, Torremolinos, Spain, 383-400.
Kate Smith-Miles. 2008. Cross-Disciplinary Perspectives on Meta-Learning for
Algorithm Selection. ACM Comput. Surv. 41 (12 2008). https://doi.org/10.1145/
1456650.1456656

Maciej Smotka, Robert Schaefer, Maciej Paszynski, David Pardo, and Julen
Alvarez-Aramberri. 2015. An Agent-Oriented Hierarchic Strategy for Solv-
ing Inverse Problems. International Journal of Applied Mathematics and Computer
Science 25, 3 (2015), 483-498. https://doi.org/10.1515/amcs-2015-0036

Mateusz Sokot and Maciej Smotka. 2022. Application of the Hierarchic Memetic
Strategy HMS in Neuroevolution. In Computational Science — ICCS 2022. Springer,
Cham, 422-429. https://doi.org/10.1007/978-3-031-08754-7_49

Ryoji Tanabe and Alex Fukunaga. 2014. Improving the Search Performance of
SHADE Using Linear Population Size Reduction. In Proceedings of the 2014 IEEE
Congress on Evolutionary Computation, CEC 2014. IEEE, Beijing, China, 1658-1665.
https://doi.org/10.1109/CEC.2014.6900380

Stefan A.G. van der Stockt and Andries P. Engelbrecht. 2018. Analysis of selection
hyper-heuristics for population-based meta-heuristics in real-valued dynamic
optimization. Swarm and Evolutionary Computation 43 (2018), 127-146. https:
//doi.org/10.1016/j.swev0.2018.03.012

D.H. Wolpert and W.G. Macready. 1997. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1, 1 (1997), 67-82. https://doi.
0rg/10.1109/4235.585893

https://doi.org/10.1145/2330163.2330209
https://doi.org/10.1109/CEC.2016.7743922
https://doi.org/10.1007/978-3-319-91086-4_14
https://doi.org/10.1007/s10732-018-9369-x
https://doi.org/10.1007/s10732-018-9369-x
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1145/3377929.3398147
https://doi.org/10.1016/S0304-3975(02)00094-4
https://doi.org/10.1016/S0304-3975(02)00094-4
https://doi.org/10.1109/MIS.2017.5
https://hal.inria.fr/hal-01297037
https://hal.inria.fr/hal-01297037
https://hal.inria.fr/inria-00362649
https://doi.org/10.5281/zenodo.7573532
https://doi.org/10.1109/SSCI.2017.8285342
https://doi.org/10.1145/2464576.2501592
https://doi.org/10.1145/2739480.2754642
https://doi.org/10.1145/2908812.2908845
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1162/evco_a_00236
https://doi.org/10.1007/978-3-030-25147-5_7
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html
https://doi.org/10.1145/2464576.2482696
https://doi.org/10.1145/2464576.2482696
https://doi.org/10.1016/j.asoc.2016.06.032
https://doi.org/10.1145/2001576.2001690
https://doi.org/10.1109/TEVC.2014.2302006
https://doi.org/10.1145/3205651.3205801
https://doi.org/10.1145/3205651.3205801
https://doi.org/10.1016/j.asoc.2022.109722
https://doi.org/10.1007/0-387-30065-1_16
https://doi.org/10.1007/0-387-30065-1_16
https://github.com/xKuZz/pyade
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/j.jocs.2019.04.005
https://doi.org/10.1007/s11047-020-09836-w
https://doi.org/10.1007/s11047-020-09836-w
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1145/1456650.1456656
https://doi.org/10.1515/amcs-2015-0036
https://doi.org/10.1007/978-3-031-08754-7_49
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1016/j.swevo.2018.03.012
https://doi.org/10.1016/j.swevo.2018.03.012
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893

	Abstract
	1 Introduction
	2 Related works
	3 Description of HMS with ELA component
	4 Experimental procedure
	4.1 Function classification
	4.2 Calculation of default parameters
	4.3 Comparison of algorithms performance

	5 Results
	5.1 Classification results
	5.2 Resulting default parameters
	5.3 Comparison results

	6 Conclusions
	Acknowledgments
	References

