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Abstract— This paper presents an experimental study that
compares the performance of four selected metaheuristic algo-
rithms for optimizing a time delay system model. Time delay
system models are complex and challenging to optimize due
to their inherent characteristics, such as non-linearity, multi-
modality, and constraints. The study includes an explanation
of the choice and core functionality of the selected algo-
rithms, which are both baseline and state-of-the-art variants of
self-organizing migrating algorithm (SOMA), state-of-the-art
variant from the Success-History-based Adaptive Differential
Evolution family of algorithms, with emphasis on diverse
search (DISH algorithm), and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) algorithm. The hyperparameters
of the metaheuristic algorithms were set using the iRace
automatic algorithm configuration framework. The paper em-
phasizes the importance of metaheuristic algorithms in control
engineering for time-delay systems to develop more effective
and efficient control strategies and precise model identifications.
The experimental results highlight the effectiveness of the state-
of-the-art algorithms with specific adaptive mechanisms like
population organization process, diverse search and adaptation
mechanisms ensuring a gradual transition from exploration to
exploitation. Overall, this study contributes to understanding
the challenges and advantages of using metaheuristic algorithms
in control engineering for time delay systems. The results
provide valuable insights into the performance of modern
metaheuristic algorithms and can help guide the selection of
appropriate adaptive mechanisms of metaheuristics.

I. INTRODUCTION

In numerous research disciplines and industry sectors of
today, a wide range of real-world challenges involves contin-
uous single-objective optimization problems. Metaheuristic
algorithms [1] have emerged as a promising tool for opti-
mizing the complex problems due to their ability to handle

The research presented in this paper was partially supported by: NCN
project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science
funds assigned to AGH University of Science and Technology. It was
also supported by Czech Science Foundation (GACR) project no: GF21-
45465L, the Internal Grant Agency of the Tomas Bata University in Zlin,
under project number IGA/CebiaTech/2023/004, and resources of A.I.Lab
at the Faculty of Applied Informatics, Tomas Bata University in Zlin
(ailab.fai.utb.cz).

1A.I.Lab, Department of Informatics and Artificial Intelligence, Faculty
of Applied Informatics, Tomas Bata University in Zlin, Czech Republic
{senkerik,oplatkova}@utb.cz

2 Department of Automation and Control Engineering, Faculty of
Applied Informatics, Tomas Bata University in Zlin, Czech Republic
{pekar,rmatusu}@utb.cz

3Institute of Computer Science, AGH Univer-
sity of Science and Technology, Krakow, Poland
{guzowski,smolka,olekb}@agh.edu.pl

high-dimensional optimization problems and their robustness
to noise and uncertainty.

Control engineering is a critical field vital in ensuring the
efficient operation of complex systems. However, various
quantities do not act simultaneously. The latency between
some action and its impact can appear [2]. Optimizing either
the control or identification of a complex system with time
delay is challenging due to numerous interdependent vari-
ables and constraints. A time delay in the system response
further complicates the problem since the system is infinite-
dimensional because of an infinite number of its modes [3].

In recent years, various metaheuristic algorithms, such
as particle swarm optimization (PSO), artificial bee colony
(ABC), genetic algorithms (GA), differential evolution (DE),
and hybrid versions with other metaheuristic algorithms have
been proposed for optimizing the control of a complex
system with time delay [4]–[6]. Despite disadvantages as-
sociated with using these algorithms, like black-box nature,
scalability, and the need for hyperparameters tuning, using
metaheuristic algorithms in control engineering for time-
delay systems offers a promising approach for developing
more effective and efficient control strategies and precise
model identifications. By leveraging the strengths of these
algorithms, researchers and practitioners can develop more
robust, scalable, and effective control systems.

The paper’s organization is the following: After the re-
search motivation and state-of-the-art section, selected vari-
ants of metaheuristic algorithms are introduced, followed
by a description of the solved problem of optimization of
time-delay system model identification. Experiments setup,
a summary of the results, and a discussion follow afterward.

A. Motivation and Originality

Solving parametric optimization problems for time-delay
systems usually brings several challenges. Wrongly selected
fitting points (frequencies) can cause very low sensitivity
to the changes in optimized model parameters and obtained
results did not satisfy quality validation. Another major issue
affecting the outcome is the nature of the time-delay system
itself. If feedback loops inside the process include delays
(i.e., the so-called state or internal delays), the system is
infinite-dimensional because of an infinite number of its
modes. Only a limited set of model parameters determines
its properties driven by an infinite set of model-free response
components. For most time-delay systems, only a subset
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of the so-called dominant modes has a decisive impact
on system features in the time domain and the frequency
domain [3]. This poses a challenge for metaheuristics, as
there is a need to search a multimodal constrained space,
and moreover, certain optimized parameters may be very
close to the domain borders. All this imposes demands on
the metaheuristic algorithm’s selection, configuration, and
core/adaptive internal mechanisms.

To better understand the effectiveness of metaheuristic
algorithms in optimizing the parameters of a model with
time delay clearly defines the motivation for this paper. This
research paper investigates the performance comparison of
selected metaheuristics to identify the most effective internal
mechanisms influencing population behavior for a real-world
constrained optimization problem, and then use the gained
knowledge in further follow-up research.

B. Related works

Due to the rapid development of new algorithms and
applications of not always correctly configured metaheuris-
tics, criticism began to occur [7]–[9]. These studies have
highlighted the need to move beyond creating new algorithms
and focus on understanding the function and taxonomy of
existing metaheuristic algorithms.

Following this trend, the previous research with the same
optimization problem modified and supplemented the cho-
sen metaheuristic algorithms with mechanisms supporting
exploratory behavior and knowledge sharing [10], [11].
The results demonstrated effectiveness compared to classical
evolutionary algorithms, such as genetic algorithms (GA).
Another study with the same optimization problem [12] then
attempted to identify more closely the problem of choosing
the boundaries of the search space and the fact that some
of the search parameters may lie very close to the domain
borders. Another observation was that the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm [13]
could handle the optimization problem better than the classi-
cal GA, and the Nelder-Mead [14] optimization method as a
baseline technique. However, the study [12] focused on the
near-domain borders search issue, the discrepancy between
the seemingly low (suitable) fitness value, and the resulting
inferior system identification and stability in the frequency
domain. It did not focus on hyperparameters tuning and
performance comparisons of several selected metaheuristic
algorithms.

All these facts were behind the experiment setup, the
selection of metaheuristic algorithms, and the search for their
best configurations. We have selected the self-organizing
migrating algorithm (SOMA) [15], [16] since it has gained
renewed interest from the research community due to its
adaptive nature, exploration capabilities, and ability to solve
complex problems. SOMA is a population-based metaheuris-
tic algorithm that modifies traditional crossover and mutation
operations to simulate a social group of individuals. Recently,
many powerful modern versions have been introduced [16].
We have chosen the original version as the baseline method
and one state-of-the-art variant SOMA Team to Team Adap-

tive (T3A). The T3A variant was introduced in 2019 [17]
and was tested in the CEC 2019 100 digits competition,
where it achieved 4th place. Another algorithm belongs to
the Success-History-based Adaptive Differential Evolution
(L-SHADE) family [18]. We have selected the DISH [19]
variant, which includes the distance-based approach, keeping
the exploration ability and higher population diversity. The
modern approaches considering the distance of solutions in
the search space should lead to avoidance of premature
convergence in higher dimensional objective spaces [20].
Finally, the last algorithm chosen was CMA-ES [13] as
another baseline technique. CMA-ES is a widely-used, ad-
vanced optimization algorithm that excels in continuous,
non-linear, and high-dimensional optimization problems. It
has become popular among researchers and practitioners due
to its robustness, efficiency, and adaptability.

II. METAHEURISTIC ALGORITHMS

The selected variants of the metaheuristic algorithms are
described in the following subsections. The hyperparameters
of the algorithms were set using the iRace autoconfiguration
framework [21] and are listed in the ”experimental results”
section IV. Why these algorithms were chosen is explained
in the previous ”related works” section I-B.

A. Generic SOMA Algorithm

The algorithm follows a simple process in the basic variant
of SOMA, called All-To-One. At the start of each iteration,
known as the migration loop, the fittest individual is selected
as the leader. The remaining individuals then move towards
the leader in the search space, taking jumps determined by
the step parameter until they reach the final position given by
the pathLength parameter. Each step is evaluated using the
fitness function, and the best position, including the initial
position of the individual, is selected as the new position
of the individual in the next migration loop. The All-To-
One variant of SOMA has been described in a recent book
and survey [15], [16]. The exact position of each step is
calculated according to (1).

xk+1
i,j = xk

i,j + (xk
L,j − xk

i,j) · t · PRTV ectorj (1)

Where xk+1
i,j is the new position of i-th solution (for

iteration k+1) for dimension j, and xi,j is the current position
of the i-th solution. The xL,j represents a position of a leader
(the leader selection depends on the used SOMA strategy).
Parameter t represents steps from i-th solution to the leader.
Solution i is migrating, by discrete steps, and the best-found
solution on t-th position is propagated into a new iteration
of the algorithm. The t parameter is generated in a range
starting from 0 to pathLength with step size step.

The PRTV ectorj represents an important mechanism in
SOMA. It is generated for each new t step. This vector
determines which dimensions will be changed in a particular
step t. In other words, in which dimensions the solution
will “head” (”be perturbed”) towards the leader position
or not. Since the SOMA algorithm was developed in the



context of the control optimization challenge, this vector is
called ”perturbation”. In contrast to other metaheuristics, its
control must be understood as a certain threshold value not
a mutation probability. The PRTV ectorj consists only of
values 0 or 1. These values are generated based on the value
of PRT parameter; the process is detailed in equation (2),
where a rand is a pseudo-random number from a uniform
distribution within the range of 0 to 1.

PRTV ectorj =

{
if randj < PRT, 1

otherwise, 0
j = 1, ..., D

(2)
In addition to the All-To-One strategy, there are other basic

strategies, namely All-To-Random, and All-To-All. As the
name suggests, these strategies involve changing the choice
of the Leader to be random and changing the organization
of the movement.

B. SOMA T3A

This algorithm features several modifications compared
to the original SOMA design, particularly emphasizing the
population organization process [17]. This process consists of
three repeated activities: organization, migration, and update.

The organization process involves two primary activities:
the selection of individuals who will migrate (termed mi-
grants) and the selection of a leader. Initially, m individuals
are randomly selected from the population, and the n best
individuals are chosen from these, where n≤m. These indi-
viduals become migrants. For leader selection, k individuals
are randomly selected from the population, and the best
individual from this set becomes the leader. The selected
migrants then move towards the chosen leader, except when
the leader is also one of the migrants (in which case, that
individual skips the migration process).

In the migration process, the PRT parameter, to which
SOMA exhibits significant sensitivity [22], has an adaptive
function. The control of this parameter is based on the
philosophy of transitioning from exploration to local search,
gradually increasing from low values to 1, according to the
following equation (3):

PRT = 0.05 + 0.90 · FEs

MaxFEs
(3)

Another change is the gradual reduction of the step size
(4), and the number of jumps is fixed and thus not bound
to the pathLength parameter, as it is in the classic version
of SOMA. This means that each individual moves toward
the leader by a certain number of jumps (hence parameter
Njumps). At these stepping points, the individual is evaluated
by a fitness function.

step = 0.15− 0.08 · FEs

MaxFEs
(4)

Although this version of the algorithm removed the need
to set the pathLength and step parameters, it added three new
parameters for managing the organization process (m, n, and
k).

C. DISH algorithm

The DISH algorithm represents the modified jSO [23], a
DE-based algorithm from the L-SHADE family [18]. In the
SHADE/L-SHADE core functionality, the mutation strategy
is “current-to-pbest/1” and uses four parent vectors – current
i-th vector xi,G, vector xpbest,G randomly selected from
the NP × p best vectors (in terms of objective function
value) from current generation G. The p value is randomly
generated by uniform PRNG U[pmin, 0.2], where pmin

= 2/NP. Third parent vector xr1,G is randomly selected
from the current generation and last parent vector xr2,G
is also randomly selected, but from the union of current
generation G and external archive A. The mutated vector
vi,G is generated by (5).

vi,G = xi,G+Fi (xpbest,G−xi,G)+Fi (xr1,G−xr2,G) (5)

L-SHADE algorithm uses a crossover scheme to create
the trial vector ui,G, with a help of the current vector xi,G,
and the mutated vector vi,G, similar as generic DE with the
following differences. Control parameters scaling factor F
and crossover rate CR are not static. Instead, the normal
distribution is used for CRi and the i-th scaling factor Fi

is generated from a Cauchy distribution. In both cases, the
historical memories with a size of H storing successful values
of parameters F and CR are used.

Also, the selection process is almost identical to the
original DE, with the addition of a historical archive. If the
objective function value of the trial vector ui,G is better than
that of the current vector xi,G, the trial vector will become
the new individual in new generation xi,G+1 and the original
vector xi,G will be moved to the external archive of inferior
solutions A. Otherwise, the original vector remains in the
population in the next generation, and the external archive
remains unchanged.

Another operation in L-SHADE algorithm is the linear
population decrease. The basic idea is to reduce the pop-
ulation size to promote exploitation in later phases of the
evolution. Therefore, a new population size is calculated
after each generation based on the available budget of fitness
function evaluation MAXFES, user-predefined NPinit as the
initial population size, and NPf as the end population size.

Finally, the idea distinguishing DISH from the jSO/L-
SHADE algorithm is that the original adaptation mechanism
for parameters F and CR values uses weights based on the
improvement of the objective function value, thus promoting
exploitation over exploration. The DISH approach is based
on the Euclidean distance between the trial and the original
individual (please, see details in [19]).

Due to the limited space here, for detailed information
about historical memory update processes for F and CR
parameters, population linear decrease calculation, please
refer to [18].

D. CMA-ES

CMA-ES is an evolutionary algorithm for optimizing com-
plex, non-linear, continuous, and high-dimensional objective



functions. Introduced by N. Hansen in the mid-1990s [13],
CMA-ES is highly effective when the optimization prob-
lem is characterized by a lack of gradients, non-separable
variables, and noisy or ill-conditioned landscapes [24]. After
initialization, the algorithm proceeds through several steps
like selection, adaptation, and reproduction. The algorithm
terminates after fulfilling the stopping criteria. CMA-ES
automatically adapts the step-size and covariance matrix to
suit the problem landscape, enabling efficient exploration
and exploitation of the search space. We have used the
well-documented Python implementation1 with an accessible
hyperparameter initial sigma (step size). For further details,
please refer to survey [13].

III. OPTIMIZED MODEL OF TIME-DELAY SYSTEM

This section describes a model for optimizing the iden-
tification of a time-delay system. It also discusses the con-
straints and selection of sampling points or frequency based
on the findings from a recent study [12].

A. General Description
The considered time-delay identification problem [25] is

defined by a model transfer function Gm : C → C (6),

Gm,p(s) =
b0 + b0,τe

−τ0s

s3 + a2s2 + a1s+ a0 + a0,θe−θs
e−τs. (6)

Parameters of such a model form a 9-dimensional real vector

p = [b0, b0,τ , τ0, τ, a2, a1, a0, a0,θ, θ] . (7)

We assume that some of the parameters are related due to
the static gain, i.e.

k =
b0 + b0,τ
a0 + a0,θ

, (8)

where the value of k is well known (or estimated). We have
used the value k = 0.0322.

The goal is to find such parameter values to satisfy (9):

Gm,p(jωi) = Ai + jBi, (9)

for some fitting points ω1, . . . , ωn and some measured values
of A1, . . . , An and B1, . . . , Bn, where j is the imaginary unit
(j2 = −1). The fitting points are given in Table I.

We have used the reformulation using the classical least-
square approach to solve (9) with metaheuristic algorithms.
The final cost (or fitness) function has form (10),

C(p) =
n∑

i=1

[
(ℜGm,p(jωi)−Ai)

2
+ (ℑGm,p(jωi)−Bi)

2
]

(10)
This way, we obtain the final version of our optimization

problem (11), which is to find such parameter values p∗ that

C(p∗) = min
p∈D

C(p), (11)

where D is the set of all p ∈ R9 satisfying (8) and
further defined constraints (12) – (15). The experiments were
conducted in R8 since parameter b0 was calculated using (8).

1https://github.com/CMA-ES/pycma

TABLE I
OBSERVATION DATA

i ωi Ai Bi

1 0.0002 0.03238 -0.00284
2 0.0003 0.03213 -0.00424
3 0.0005 0.03137 -0.00694
4 0.0008 0.02962 -0.01063
5 0.001 0.02813 -0.01278
6 0.0012 0.02645 -0.01465
7 0.0015 0.02371 -0.01692
8 0.0018 0.02087 -0.01857
9 0.002 0.01899 -0.01936

10 0.003 0.01063 -0.02054
11 0.005 0.00057 -0.01713
12 0.008 -0.00540 -0.01110
13 0.01 -0.00704 -0.00795
14 0.011 -0.00757 -0.00658
15 0.012 -0.00795 -0.00531
16 0.014 -0.00843 -0.00296
17 0.016 -0.00860 -0.00074
18 0.018 -0.00846 0.00147
19 0.02 -0.00795 0.00377
20 0.025 -0.00346 0.00982

B. Constrains

To achieve appropriate properties of solutions, we use the
following mandatory feasibility constraints (12):

τ0 > 0, τ > 0, θ > 0 (12)

Further, the stability conditions (13), which must be valid
simultaneously:

a2 > 0, a1 > 0, a0 + a0,θ > 0,

a2a1 > a0,

a2a1 > a0 + a0,θ,
a0,θ√

(a0 − a2ω2)2 + ω2(a1 − ω2)2
< 1, ∀ω > 0.

(13)

Finally, the minimum-phase condition (14):

|b0| > |b0,τ |, (14)

and other natural conditions (15):

a0 ̸= 0, a0,θ ̸= 0, b0,τ ̸= 0. (15)

IV. EXPERIMENTAL RESULTS

All experiments with the black box optimization problem
instance were repeated 30 times with maximum fitness
function evaluation (MAXFES) set to 400 000. The settings
of the search space boundaries are defined in Table II. The
hyperparameter settings for all algorithms were obtained
from the automatic algorithm configuration tool iRace [21],
and the settings are the following:

• SOMA All-To-One (ATO): NP = 72, PRT = 0.47,
pathLength = 2.3, step = 0.345,

• SOMA T3A: NP = 98, Njump = 26, m = 38, n = 13,
k = 36,



TABLE II
PARAMETER SEARCH RANGES

Name L limit H limit
b0D 0 100
τ0 0 500
τ 0 1000
a2 0 2500
a1 0 2500
a0 -250 250
a0D -250 250
θ 0 1000

TABLE III
PARAMETER SEARCH RANGES

Alg. min max median mean std.dev.
ATO 1.08e-08 6.23e-05 9.37e-08 2.19e-05 2.93e-05
T3A 1.08e-08 6.23e-05 1.08e-08 1.19e-05 2.37e-05
DISH 6.69e-13 2.17e-05 7.36e-13 7.21e-07 3.94e-06

CMA-ES 1.08e-08 2.84e-03 8.70e-04 8.43e-04 6.28e-04

• DISH: NPinit = 86, NPf = 14, H = 12,
• CMA-ES: init sigma = 0.71.
The NP represents the number of individuals in the popu-

lation (PopSize). The remaining parameters are explained in
the section II ”metaheuristic algorithms.”

The nature of the optimization problem allows evaluating
the fitness function even in the case of infeasible solutions (as
long as they lie within bounds). Therefore, complex methods
to avoid infeasible solutions on an algorithmic level were
not implemented. Still, random re-initialization of infeasible
solutions was chosen since the study [12] confirmed the
higher efficiency of metaheuristics with population restarting.

The results are shown and organized in the following
way: statistical data are presented in Table III, together
with convergence plots in Fig. 1, and the box-whisker plots
depicted in Fig. 2. The algorithm DISH (highlighted in
bold) achieved the best feasible result. The parameter struc-
ture of this solution is: {2.4368e-11, 300.7509, 132.6753,
0.1772, 0.0090, 0.0001, -7.6526e-05, 143.0223}, confirming
the problem of the near-domain bounds optimization problem
(dimensions 1, 4, and 5). The stability of the best solution
is also depicted as a Nyquist plot in Fig. 3.

V. CONCLUSIONS

This research aims to enhance our understanding of meta-
heuristic algorithms in control engineering and investigate
their potential for optimizing the parameters of time delay
system models. The results support the need to pay careful
attention to the core functionality of the metaheuristic algo-
rithm, the choice of its adaptive techniques, and the setting
of its hyperparameters (configuration).

Focusing on the individual results, it can be seen from the
statistical data, convergence plot (Fig. 1), and box-whisker
plots (Fig. 2) that the DISH shows the best performance. This
was also confirmed by the Mann-Whitney U test (Wilcoxon
rank sum test), revealing the fact, DISH algorithm designed

Fig. 1. Mean convergence plot for all algorithms and 30 runs.

10−13 10−11 10−9 10−7 10−5 10−3

ATO
T3A

DISH
CMA-ES

Fig. 2. Box and whisker plot, 30 repeated runs, where ID 1 is for SOMA
ATO, 2: SOMA T3A, 3: DISH, and 4: CMA-ES

to support diverse search is significantly better than all other
algorithms. Notable results were also achieved by SOMA
T3A, which includes internal adaptive functionality for linear
control of its own parameter and specific population orga-
nization that can support the exploratory capabilities of the
algorithm and local search in the later stages of optimization.
The CMA-ES algorithm provided the worst performance.
The best-found solution was also checked regarding stability.
Fig. 3 shows the so-called Nyquist plot, which is used for
assessing the stability of a system with feedback. Our ob-
tained model seems highly accurate and fitting for the whole
range of frequencies. The presented experimental research
has achieved significantly improved results, close to those
obtained by theoretically demanding and time-consumptive
mathematical-physical modeling requiring prior knowledge
about the process.

It can be argued that for this type of real-world problem,
it is advantageous to use an algorithm with an organizing
process or sub-populations (even with partial restarting or
injection of individuals) and to control both diverse search
and the exploration-to-exploitation transition. The design of
the DISH algorithm with an emphasis on population diversity
seems to have aided in the continuation of the search process,
as seen in the convergence plot (Fig. 1) in the region
after 200,000 FES. Future Research Directions: The paper
identifies potential areas for future research, suggesting that
further exploration of bound constraints handling methods
for metaheuristic algorithms and, of course, identifying the
essential algorithm components for using autoconfiguration
frameworks could lead to even more effective optimization.



Fig. 3. Nyquist plot for the best individual solution (DISH algorithm)
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